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1 Tools for Assembling and Managing Scalable 
Knowledge Bases 
The HPKB program was aimed to produce technology to rapidly construct large, 

reusable, and maintainable ontologies and knowledge bases (KBs).  To achieve this goal,  

large-scale KBs cannot always be built from scratch, but instead need to be assembled as 

much as possible from existing resources.  Reuse, however, does not come for free: 

reusable material has to be identified, translated, adapted, debugged, merged with other 

material and maintained, all of which can be very difficult and expensive processes.  

Therefore, for reuse to be effective, it has to be supported by a set of adequate knowledge 

base construction, editing and maintenance tools. 

As part of our participation in HPKB we built a variety of tools and infrastructure aimed 

at supporting the ontology and knowledge base construction process.  All these tools are 

centered around the PowerLoom knowledge representation and reasoning (KR&R) 

system (http://www.isi.edu/isd/LOOM/PowerLoom), which is a highly expressive, logic-

based KR&R system with multiple built-in deductive reasoning capabilities including a 

query processor, a description classifier, and a context mechanism.  The developed tools 

cover various areas of the knowledge base and ontology construction process and are 

outlined in more detail below. 

1.1 Knowledge Translation 
As mentioned above, reuse is a very important prerequisite for being able to build large, 

high performance knowledge bases as quickly as possible.  However, relevant ontologies 

and knowledge bases that could be reused are often formulated in a different knowledge 

representation language than the one that is required, use different or incompatible 

modeling conventions, or need to be semantically altered or “morphed” to fit with the 

newly developed knowledge base.  Therefore, one needs a powerful translation tool that 

allows one to easily translate and adapt reusable knowledge into the required format 

before it can be integrated with other parts of the new knowledge base. 

To support this part of the ontology and knowledge base construction process, we built 

the OntoMorph translation tool for symbolic knowledge.  OntoMorph provides a 
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powerful rule language to represent complex syntactic transformations, and it is fully 

integrated with the PowerLoom KR&R system to allow transformations based on any 

mixture of syntactic and semantic criteria.  Within HPKB, OntoMorph was first 

successfully applied as the input translator for the course of action critiquing system 

developed by the Expect group at USC ISI.  Since then it has been used in other 

applications such as a translation service for agent communication as well as file-based 

and dynamic CycL to PowerLoom translators.  Details of OntoMorph are described in 

Section 2, which also motivates how OntoMorph can be used to support knowledge base 

merging tasks. 

1.2 Browsing and Editing 
Another important part of the knowledge base construction process are powerful 

browsing and editing tools.  These tools enable the knowledge engineer to easily navigate 

through potentially very large ontologies and knowledge bases, visualize and understand 

their structure and then make any necessary modifications. 

To support the browsing process, we adapted the Web-based OntoSaurus knowledge base 

browser [Swartout et. al, 1996] to be able to display and navigate through PowerLoom 

knowledge bases.  OntoSaurus was initially developed for the Loom KR&R system 

(PowerLoom’s predecessor) which is a description logic system and uses a representation 

language quite different from the one used by PowerLoom.  Therefore, we had to 

reimplement OntoSaurus to work with PowerLoom knowledge bases.  The new version 

of OntoSaurus was written in the STELLA programming language [Chalupsky & 

MacGregor, 1999] which allows us to deliver it in Lisp, C++ and Java versions.  A screen 

shot of OntoSaurus displaying parts of a PowerLoom knowledge base is shown in   

Figure 1. 

A browsing tool is of course not enough, one also needs to be able to edit and modify the 

knowledge base.  To that end, we built a completely new Java-based knowledge base 

editing tool for PowerLoom.  While initially we planned to extend OntoSaurus with the 

required editing functions, we finally decided to implement the editor directly in Java, 

since that gives much higher flexibility, better support for complex editing functions such 

as context dependent cut and paste, completion, etc.  Using new technology such as Java 
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WebStart, we can continue to give users the ability to launch the interface by simply 

using their Web browser while still reaping the flexibility benefits of writing the editor 

directly in Java.  More details of the Java-based knowledge editor are described in 

Section 4. 

Figure 1: OntoSaurus browser for PowerLoom knowledge bases. 

1.3 Learning and Partial Inference 
Most commonly, new knowledge bases are built by knowledge engineers by explicitly 

modeling all relevant aspects of a particular domain.  Even if this process is accelerated 

by reusing some already existing knowledge bases, it still requires the knowledge 

engineer to have a sufficient understanding of the domain to be able to construct a 
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knowledge base that is correct and useful.  However, this understanding of the domain is 

not always easy to come by, in particular, if the domain knowledge is expertise and skill 

experts acquired over the course of their career. 

While experts often have difficulty articulating how the domain should be modeled and 

what exactly they base their decisions on, they are usually very good in providing 

examples of relevant scenarios.  To be able to exploit knowledge provided in the form of 

examples, we developed the KILTER tool set.  KILTER is built on top of PowerLoom 

and provides a set of tools such as a neural-network-based learner for weights and weight 

combination over logic rules, a rule induction engine and a case-based reasoner that can 

each be used to exploit knowledge provided in the form of examples or cases.  A central 

ingredient of all these tools is a special partial inference engine built on top of 

PowerLoom’s backward chaining reasoner that can derive partial answers to a query even 

if not all necessary supporting knowledge is available.  This is an important functionality 

required by KILTER, since matching of examples and cases is usually inexact which is 

not supported by standard, strict logical inference.  An application of the KILTER case-

based reasoner to determine decisive points in a military course of action is described in 

Section 3. 

1.4 Large-scale Persistent Storage and Scalable 
Inference 
One aspect of high performance knowledge bases is that they can be very large.  It is 

therefore extremely important for tools operating on such knowledge bases to be 

scalable.  For a KR&R system to be scalable, it has to (1) be able to efficiently store and 

access very large knowledge bases, and (2) be able to reason with them effectively.  As 

part of our work in HPKB we addressed both of these issues. 

To be able to efficiently store and access very large KBs, we built the PowerLoom 

Knowledge Pager.  The Knowledge Pager uses a relational database (currently MySQL) 

to persistently store PowerLoom knowledge.  To do that, relation definitions and 

assertions are specially encoded and then stored in the database.  The current encoding 

scheme stores all PowerLoom assertions in a single table which is different from standard 

database practice, where each relation is stored in a different table.  However, our 
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encoding scheme allows us to very easily ask standard KR&R-style queries such as 

“what are all facts known about Fred” which would be very difficult to ask in a standard 

scheme using many individual relation tables. 

A newly developed indexing and access scheme then allows PowerLoom to dynamically 

find and page in knowledge from the database store.  This scheme is lazy and does not 

page in any knowledge into main memory until it is actually needed.  A special 

prefetching mechanism adds a little bit of “eagerness” to this lazy scheme in order to be 

able to exploit locality on the database end by paging in related (and hopefully relevant) 

information in a single access.  Paged-in knowledge is stored in a size-limited cache, 

which provides speedy access to repeatedly needed information but also ensures that we 

won’t run out of memory even if we work with very large knowledge bases.  

Modifications to the knowledge base are written back out to the database, which gives us 

persistence.  Variations of this knowledge paging mechanism have now also been applied 

in other DARPA programs such as RKF and EELD. 

The second aspect of scalability is effective inference.  PowerLoom uses a fully 

expressive language (a variation of first order logic) as its representation language.  

Performing logical inference with first order logic is inherently computationally 

intractable, but PowerLoom uses a variety of mechanisms such as resource bounded 

inference and specialized reasoners to cope with the computational complexity of logical 

inference.   

In the context of very large knowledge bases, however, there is a second complexity 

aspect that needs to be attended to: inference processes that are “eager” in nature and 

always look at every item in the knowledge base are problematic, because it might take a 

very long time for them to complete.  One such affected inference module is the 

PowerLoom description classifier which had to be designed specially to be able to work 

with very large knowledge bases. 

Description classifiers are uniquely suited to the task of organizing conceptual networks 

into semantic hierarchies, and for validating the consistency of a knowledge base.  

Classifier inferences help to make explicit semantic relationships and derived facts that 

exist implicitly in a knowledge base, thereby assisting users in visualizing the contents 
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and consequences of a complex base of axioms and facts.  Classifiers are also able to 

detect contradictory definitions, thereby providing a semantic check on the integrity of a 

domain model. 

Traditionally, all classifiers have been designed to operate in a sort of “batch” mode—for 

every concept and instance entered into a classifier-based KR&R system the classifier 

computes subsumption relationships derivable between it and all other concepts.  The 

computational overhead of classification becomes prohibitively large as knowledge bases 

increase in size.  In practice, this prevents a classification-based KR&R system from 

managing very large knowledge bases; in other words, it is not scalable.   

For PowerLoom, we invented a new mode of classification wherein any portion of a 

knowledge base can be loaded into PowerLoom’s working memory, and the PowerLoom 

classifier will classify only the main memory-resident knowledge entities.  A special-

purpose form of this scheme is PowerLoom’s module-based classification that classifies 

all relations and instances in a particular module only, thereby leaving large portions of 

the knowledge base residing in other modules untouched.   This allows a user to classify 

the portion of the knowledge base or ontology s/he is actually interested in, without 

having to pay the computational overhead for classifying large amounts of knowledge 

that is irrelevant to the users task. 

1.5 Other Tools 
As programming languages drift in and out of fashion, large software systems built in 

those languages can become obsolete, because the expense of porting them to newer 

languages can be prohibitive.  This phenomenon is currently afflicting systems built in 

Common Lisp—large research systems such as Loom are gradually becoming less useful 

to certain classes of users as those users migrate to other languages (e.g., to C, C++ or 

Java).  Prior to HPKB our group developed a unique programming language called 

STELLA, tailored for programming intelligent symbol processing applications, that 

eliminates this problem.  Programs written in STELLA can be translated into efficient 

C++ and Common Lisp programs.  As part of our work in HPKB we additionally 

developed a STELLA-to-Java translator.  A system programmed in STELLA can 

therefore be used by the (still considerable) body of researchers that use Common Lisp, 
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as well as by (more product-oriented) users who base their software on C, C++, or Java.  

PowerLoom is written in STELLA, and hence runs efficiently in all three different 

languages.  As mentioned above, the OntoSaurus browser is also written in STELLA, 

making it highly portable as well.  The use of STELLA-based technology means that 

research systems like PowerLoom can get transitioned much more rapidly and smoothly 

into commercial or product environments. 
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2 The OntoMorph Translator for Symbolic 
Knowledge 

2.1 Introduction 
A common problem during the life cycle of knowledge-based systems is that 

symbolically represented knowledge needs to be translated into some different form.  As 

a tool to support such translation needs, we developed the OntoMorph system.  

OntoMorph provides a powerful rule language to represent complex syntactic 

transformations, and it is fully integrated with the PowerLoom KR system to allow 

transformations based on any mixture of syntactic and semantic criteria 

For example, integration of independently developed knowledge-based components 

[Cohen et al., 1998], merging of overlapping ontologies [Valente et al., 1999], 

communication between distributed, heterogeneous agents, or porting of knowledge-

based systems to use a different knowledge representation infrastructure commonly 

require translation, since every encoding of knowledge is based on a multitude of 

representational choices and assumptions.  Translation needs go well beyond syntactic 

transformations and occur along many dimensions, such as expressivity of representation 

languages, modeling conventions, model coverage and granularity, representation 

paradigms, inference system bias, etc., and any combination thereof. 

Traditionally, such translations are either performed manually via text or knowledge base 

editors or via special-purpose translation software.  Manual translation is slow, tedious, 

error-prone, hard to repeat and simply not practical for certain applications. Special-

purpose translation software is difficult to write, hard to maintain and not easily reusable. 

Being confronted with translation problems on a frequent basis, we developed the 

OntoMorph system to facilitate ontology merging and the rapid generation of knowledge 

base (KB) translators.  OntoMorph combines two powerful mechanisms to describe KB 

transformations: (1) syntactic rewriting via pattern-directed rewrite rules that allow the 

concise specification of sentence-level transformations based on pattern matching, and 

(2) semantic rewriting which modulates syntactic rewriting via (partial) semantic models 

and logical inference supported by an integrated KR system.  The integration of these 
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mechanisms allows transformations to be based on any mixture of syntactic and semantic 

criteria, which is essential to support the translation needs enumerated above.  The 

OntoMorph architecture facilitates incremental development and scripted replay of 

transformations, which is particularly important during KB merging operations. 

2.2 The Translation Problem 

Figure 2: The knowledge translation problem. 

The general problem we set out to solve is shown in Figure 2. Given some source 

knowledge base KBs we want to design a transformation function τ to transform it into a 

target knowledge base KBt.  A fundamental assumption in this formulation is that source 

and target KBs are describable by a set of sentences in some linear, textual notation, 

where sentence means some independent syntactic unit as opposed to a well-formed 

logical formula associated with a truth value.  This does not exclude graphical languages 

such as, for example, SNePS [Shapiro & Rapaport, 1992] or Conceptual Graphs [Sowa, 

1992], since they usually also have some linear syntax to textually describe their 

networks.  The translation does not necessarily have to span a whole knowledge base.  In 

some cases, it might only involve single expressions. 

A common correctness criterion for translation systems is that they preserve semantics, 

i.e., the meaning of the source and the translation has to be the same.  This is not 

necessarily desirable for our transformation function τ, since it should be perfectly 

admissible to perform abstractions or semantic shifts as part of the translation.  For 

example, one might want to map an ontology about automobiles onto an ontology of 

documents describing these automobiles.  Since this is different from translation in the 

usual sense, we prefer to use the term knowledge transformation or morphing. 

τ

Source KBs Target KBt
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2.3 Dimensions of Mismatch 
Despite the fact that the function τ might perform arbitrary semantic shifts, the most 

common scenario is to translate between different models of the same general domain.  

Unfortunately, these models can and in practice do differ along a multitude of 

dimensions. The most commonly encountered mismatches are outlined below. 

2.3.1.1 KR language syntax: 
Every KR language comes with its own syntax, which is probably the most mundane but 

nevertheless annoying mismatch.  For example, here are three different ways of defining 

automobiles as a subclass of road vehicles, one for Loom [MacGregor, 1991], a KL-

ONE-style description logic, one for MELD, the representation language used by CYC 

[Lenat, 1995] and one for KIF [Genesereth, 1991]: 

Loom:  (defconcept Automobile 
         "The class of passenger cars." 
         :is-primitive Road-Vehicle) 
 
MELD: (#$isa #$Automobile #$Collection) 
      (#$genls #$Automobile #$RoadVehicle) 
      (#$comment #$Automobile  
        "The class of passenger cars.") 
 
KIF:  (defrelation Automobile (?x) 
        "The class of passenger cars." 
        :=> (Road-Vehicle ?x)) 

 

Apart from different surface syntax, there are also different syntactic conventions such as 

the spelling of names that are really part of the culture of the language users.  For 

example, CYC names are mixed-case without hyphens as opposed to the hyphenated, 

case-insensitive spelling usually used with the other languages. 

2.3.1.2 KR language expressivity: 
Every KR language trades off representational expressiveness with computational 

tractability.  For example, negation, quantification, defaults, modal operators, 

representation of sets, etc. are supported by some languages and not by others.  When 

translating between languages of different expressiveness, difficult choices have to be 

made in how to map certain representational idioms.  For example, to represent that the 
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typical capacity of a passenger car is five, we could use the following representation in 

Loom: 

(defconcept Automobile 
  :is-primitive Road-Vehicle 
  :defaults (:filled-by passenger-capacity 5)) 

 

To represent the same in ANSI KIF which does not support defaults, one would have to 

resort to something like the following and then leave it up to some extra-logical means to 

properly reason with typicality assertions: 

(defrelation Automobile (?x) 
 :=> (and (Road-Vehicle ?x) 
          (typical-passenger-capacity ?x 5))) 
 

2.3.1.3 Modeling conventions: 
Even if the KR language and system for source and target KB are the same, differences 

occur because of the way a particular domain is modeled.  For example, a choice one 

often has to make is whether to model a certain distinction by introducing a separate 

class, or by introducing a qualifying attribute relation.  E.g., to distinguish between 

tracked and wheeled vehicles, one could either introduce two subclasses of Vehicle 

called Tracked-Vehicle and Wheeled-Vehicle, or use an attribute relation as 

in(traction-type My-Car wheeled).  Which representation to choose is in 

most cases just a matter of taste or convention. 

2.3.1.4 Model coverage and granularity: 
Models differ in their coverage of a particular domain and the granularity with which 

distinctions are made.  This is often the very reason why ontologies are merged.  For 

example, one ontology might model cars but not trucks.  Another one might represent 

trucks but only classify them into a few categories, while a third one might make very 

fine-grained distinctions between types of trucks based on their general physical 

structure, weight, purpose, etc. 

2.3.1.5 Representation paradigms: 
Different paradigms are used to represent concepts such as time, action, plans, causality, 

propositional attitudes, etc.  For example, one model might use temporal representations 
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based on Allen's interval logic [Allen, 1984], while another might use a representation 

based on time points.  Section 2.5 describes a situation where two different 

representations of "purpose'' had to be reconciled with the help of OntoMorph. 

2.3.1.6 Inference system bias: 
Last but not least, another reason why models often look a certain way is that they were 

constructed to produce desired inferences with a particular inference engine or theorem 

prover.  For example, in a description logic such as Loom, certain inferences are well-

supported by the classifier, while others are only supported at the instance or individual 

level.  This trade-off can influence one's choice whether to model something as a class or 

as an individual.  See [Valente et al., 1999] for a discussion of modeling examples 

exhibiting inferencing bias. 

2.4 OntoMorph 
To facilitate the rapid specification of KB transformation functions such as τ described 

above, OntoMorph combines two powerful mechanisms: (1) syntactic rewriting via 

pattern-directed rewrite rules that allow the concise specification of sentence-level 

transformations based on pattern matching, and (2) semantic rewriting which modulates 

syntactic rewriting via (partial) semantic models and logical inference. 

2.4.1 Syntactic Rewriting 
To allow translation between arbitrary KR languages that can differ widely in their 

syntax, expressiveness, and underlying knowledge model, OntoMorph uses syntactic 

rewriting as its core mechanism.  Input expressions are first tokenized into lexemes and 

then represented as syntax trees whose subtrees represent parenthesized groups (similar 

to Lisp s-expressions).  The tree structure exists only logically; a tree is represented 

internally as a flat sequence of tokens. 

For example, the expression f(g([x],y)) would be represented by the token 

sequence 

`f' `(' `g' `(' `[' `x' `]' `,' `y' `)' `)' 
 

which, logically, represents the syntax tree shown in Figure 3. The significance of the 
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tree structure is that complete subtrees can be matched by a single pattern variable, and 

that sequence variables do not consume tokens beyond subtree boundaries. 

 

Figure 3: Syntax tree representation of f(g([x],y)) 

OntoMorph's syntactic rewrite rules have this general form: 

pattern ==> result 

The left-hand-side pattern matches and destructures one or more syntax trees while the 

right-hand side generates new trees of the desired format by explicitly specifying new 

structure, reassembling some of the destructured information and by possibly further 

rewriting some subexpressions.  For example, a very simple rule to convert a MELD type 

assertion into its Loom analogue would look like this (pattern variables are prefixed with 

a '?'): 

(isa ?x ?class) ==> (tell (?class ?x)) 
 

The ability to describe such transformations in a very direct and concise fashion was an 

important design objective for OntoMorph.  When researching the relevant parsing and 

pattern-match literature and technology, we found that a language called Plisp (or Pattern 

Lisp) [Smith, 1990], which in turn is a direct descendent of the Lisp 70 pattern matcher 

[Tesler et al., 1973], came closest to our intuitions on how such transformations should 

be represented and executed. Unfortunately, none of these systems is alive and well 

anymore, so we had to develop our own version. 

2.4.1.1 Pattern Language 
OntoMorph's pattern language and execution model is strongly influenced by Plisp, even 

though the actual surface syntax is quite different.  The pattern language can match and 

{) 
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destructure arbitrarily nested syntax trees in a direct and concise fashion.  A short 

overview of the available constructs is given below: 

Literals such as foo, "bar", 42,(, (a (b c)), etc., have to be matched by identical 

literal tokens (or token sequences). 

Variables (indicated by a ?-prefix), e.g.,?x, ?why or the anonymous variable ?, can 

match individual input tokens such as foo or a token sequence representing a tree such 

as (a (b c)).  Once a variable is bound, it can only be matched by literal tokens 

matching its binding. 

Sequence variables (indicated by a ??-prefix), e.g.,??h, ??tail or the anonymous 

variable ??, can match tree subsequences such as c (d) in the tree(a b c (d)).  

For example, the pattern (??x b ??y)matches the tree (a b c (d)) by binding 

??x to the single-element sequence a and ??y to the sequencec (d).  Sequence 

variables cannot consume tokens beyond subtree boundaries. 

Grouping (expressed via braces) defines compound patterns.  For example, the pattern 

{a ?x c} can match the token sequencea b c.  Groups are also used to apply pattern 

modifiers such as repetition to compound patterns. 

Alternatives (expressed via vertical bars) define disjunctive patterns such as {a | (b 

?x) | c d}.  The pattern matches if one of its components succeeds. 

Optionals such as {a b [c]} are syntactic sugar for the more verbose {a b | a b 

c} notation. 

Repetition (expressed with the usual * or +notation) indicates that a pattern can be 

matched multiple times.  As a generalization, an m-n range can be supplied to mandate 

that there have to be at least m and at most n matches.  For example, {a | b}+ 

matches any sequence of a's and b's with length ≥ 1,{a | b}*1-2 matches only those 

sequences with lengths between 1 and 2. 

Input binding binds the input matched by a complex pattern to a single variable.  This is 

useful if a pattern has alternatives and it is necessary to refer to what was actually 

matched by it in the right-hand side of a rewrite rule (without alternatives, the same could 
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be achieved by literally repeating the pattern).  For example, ?x := {a | (b ?y) 

|c} matched against (b d) binds ?x to (b d). 

Below is an example pattern that combines various of the elements described above to 

match and destructure a Loom concept definition (note, that the example only covers 

some aspects of the Loom concept language).  The alternatives in combination with the 

repetition construct allow the keyword/value pairs to appear in any order.  The 

construction for the :annotations keyword extracts a documentation string (which 

might appear in various ways) while ignoring everything else: 

(defconcept ?name 
  {?is := {:is | :is-primitive} ?def | 
   :characteristic ?c | 
   :annotations 
    ?a := {(documentation ?d) | 
           (:and ?? (documentation ?d) ??) | 
           ?}}*0-3) 

 

The pattern matches and destructures concept definitions such as this  one: 

(defconcept Dog 
   :annotations  
      (:and Class (documentation "Canine")) 
   :is-primitive Animal) 
 

2.4.1.2 Execution Model 
Rewrite rules are applied according to the following simple execution model: Initially, an 

input stream is constructed consisting of the token sequence representing the input 

expression.  When a rewrite rule is applied, its left-hand-side pattern consumes tokens 

from the input stream by matching them against the elements of the pattern.  If the pattern 

succeeds, the right-hand-side result is assembled and the resulting tokens are pushed back 

onto the input stream where they replace the consumed input and become available as 

input to further rewrite rules. For example, assume we have the following input stream: 

`(' `isa' `car1' `Ford' `)' `(' ... 
 

Now we apply the type transformation rule from before: 

(isa ?x ?c) ==> (tell (?c ?x)) 
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Applying the rule modifies the input stream to the following: 

`(' `tell' `(' `Ford' `car1' `)' `)' `(' ... 
 

Assembly of a rule result involves collecting its right-hand-side component tokens from 

left to right into a temporary store.  Literal tokens such as the tell above are simply 

copied, variables are substituted by their bindings, and functions and recursive rule 

invocations (explained below) are evaluated and their results collected.  Once all right-

hand-side components have been successfully evaluated, the content of the temporary 

store is prepended to the input stream where it replaces the input consumed by the left-

hand-side. 

Rewrite rules are always assembled into rule sets of the following form: 

          (defruleset name  

                pattern1 ==> result1  

                                ...  

                patternn ==> resultn) 

The individual rules are implicitly OR-ed and tried in sequence.  The ruleset succeeds 

with the result of the first successful element rule. 

Explicit invocation of named rulesets is the primary mechanism to achieve recursion, 

which is necessary to handle the translation of recursive structures.  Apart from this 

computational aspect, grouping rules improves modularity, and it also greatly improves 

efficiency, since it restricts the set of rules tried to rewrite any given subexpression. 

While matching a pattern and also during the assembly of the right-hand-side result 

which might involve further rewrites, a rule may fail.  In that case execution backtracks 

to the most recent match choice point.  After all input has been consumed and no more 

rules need to be applied, the process terminates and the resulting state of the input stream 

constitutes the result of the rewrite operation which is then either printed to some storage 

medium or used directly as part of a KB operation such as assertion or retrieval. 



 

 17

2.4.1.3 Function Calls and Rule Invocations 
To allow the parsing and rewriting of recursive structures, other rulesets as well as built-

in functions can be invoked explicitly anywhere in a pattern.  Such invocations are 

written with an angle bracket syntax to distinguish them from the regular syntax tree 

notation.  For example, the call <Term ?x> invokes a function or ruleset called Term 

on the argument ?x.  Before the function is called, its arguments are evaluated and the 

results pushed back onto the input stream from which they are then consumed. Excess or 

missing arguments are left on or filled in from the remainder of the input.  When a 

function or ruleset invocation on the left-hand side of a rule returns, its result gets pushed 

back onto the input where it immediately becomes available to subsequent pattern 

elements.  On the right-hand side (as described above), the result gets first collected in a 

temporary store until all right-hand-side tokens of the rule have been evaluated. 

The following two rule sets constitute a simple transformation system for arithmetic 

expressions (note, that the + and *symbols need to be escaped to treat them as ordinary 

characters): 

(defruleset Term 
  (?op := {\+ | - | \* | /} ?x ?y)  
     ==> (?op <Term ?x> <Term ?y>)  
  (1\+ ?x) ==> (\+ <Term ?x> 1)  
  (1- ?x) ==> (- <Term ?x> 1)  
  (square ?x) ==> (\* <Term ?x> <Term ?x>) 
  ?x ==> ?x) 
 
(defruleset Condition 
  (lt ?x ?y)  
     ==> (negative? (- <Term ?x> <Term ?y>)) 
  (gt ?x ?y) ==> <Condition (lt ?y ?x)>) 

 

To apply these rules, we can use the OntoMorph function rewrite which takes an input 

expression and a start rule as arguments.  For example, 

   (rewrite (gt (/ (1+ M) N) (square N))  
            Condition)  

 

returns the following result: 

   (negative? (- (* N N) (/ (+ M 1) N))) 
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Currently, OntoMorph uses a Lisp-style reader to tokenize the input into individual 

lexemes.  Future versions will allow the specification of customized tokenizers in order to 

support the translation of languages with different lexical conventions. 

2.4.2 Semantic Rewriting 
Syntactic rewriting is a powerful mechanism to describe pattern-based, sentence-level 

transformations.  However, it is not sufficient if the transformations have to consider a 

larger portion of the source KB, possibly requiring logical inference.  A simple example 

of such a transformation is conflation.  Suppose one wants to conflate all subclasses of 

Truck occurring in some ontology about vehicles into a single Truck class.  This 

involves among other things the rewriting of all type assertions involving trucks.  Using 

syntactic rewriting alone, one would need a rule such as the following that explicitly lists 

all subtypes of Truck: 

(defruleset Conflate-Truck-Types 
  ({Light-Truck | Heavy-Truck | ...} ?x)  
    ==> (Truck ?x)) 

 

For large taxonomies this is of course neither elegant nor feasible. Instead of the purely 

syntactic test based on truck class names, a semantic test is needed to check whether a 

particular class is a subclass of Truck.   

To facilitate the utilization of semantic information, OntoMorph is built on top of the 

PowerLoom knowledge representation system. PowerLoom is a successor to the Loom 

system that supports definitions and rules in a typed variant of KIF combined with a 

powerful inference engine and a classifier.  Wherever a function call is legal in a rewrite 

rule, a PowerLoom function can be called to change or access the state of the current KB.   

One way to solve the conflation problem is to establish a partial mirror of the source KB 

within an intermediate PowerLoom KB.  This can be done with a specialized set of 

rewrite rules that import source sentences representing taxonomic relationships, but 

ignoring all other information, for example, by only paying attention to subset and 

superset assertions.  This step can be viewed as the first pass of a two-pass translation 

scheme.  In the second pass, the actual translation rules are applied, but now they can also 
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access the semantic information established in the first pass.  Making use of the imported 

taxonomic knowledge, the following rule can conflate all truck types: 

(defruleset Conflate-Truck-Types 
 {(?class ?x) <ask (subset-of ?class Truck)>}  
    ==> (Truck ?x)) 

 

The left-hand-side contains a group of patterns which is treated as a conjunction.  The 

first conjunct (?class ?x) simply matches any type assertion.  The second one calls 

ask which triggers a PowerLoom query.  Note that ?class will be substituted with the 

matched class name, thus, the query will be fully ground.  Since ask is a boolean-valued 

function, its result will simply be treated as a test instead of being pushed back onto the 

input stream. 

Using semantic import rules, an arbitrarily precise image of the source KB semantics can 

be established within PowerLoom (limited only by the expressiveness of first-order 

logic).  Then syntactic rewrite rules can use the imported semantic information to 

perform rewrites based on any mixture of syntactic and semantic criteria. 

Obviously, the precision of the semantic import will affect the quality of the translation.  

For example, in the scenario above the semantic import only considered subset and 

superset assertions.  Depending on the nature of the source KB, there might be other 

information and rules that would allow one to infer additional taxonomic relationships.  

These would then not be inferable within the partial PowerLoom mirror KB which might 

adversely affect the translation quality.   

Whether this is a problem and how to best solve it has to be decided on a case-by-case 

basis.  One solution is to use PowerLoom as an interlingua and import everything from 

the source KB (again, this is limited only by the expressiveness of PowerLoom).  The 

disadvantage of this scheme is that one effectively needs two sets of translation rules, one 

to translate from the source into PowerLoom, and one to go from PowerLoom to the 

target representation.  Alternatively, it might be possible to call out to the KR system that 

has the source KB loaded and use its inferencing capabilities directly.  This can either be 

done via some special-purpose API, or, if supported, via a protocol such as OKBC 

[Chaudhri et al., 1998].  Which route to take will depend on a variety of pragmatic 
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factors.  For the OntoMorph applications constructed to date, importing partial semantic 

information into PowerLoom was sufficient to support all rewriting needs. 

2.5 OntoMorph Applications 
OntoMorph has already been successfully applied in a couple of domains.  One involved 

the translation of military scenario information for a plan critiquing system.  In the 

second it formed the core of an agent translation service called Rosetta, where it was used 

to translate messages between two communicating planning agents that used different 

representations for goals. 

2.5.1 Course of Action Critiquer 
One of the challenge problems that drove the second phase of DARPA's High 

Performance Knowledge Bases (HPKB) project [Cohen et al. 1998] was to develop 

critiquing systems for military courses of actions (or COAs) which are high-level, plan-

like descriptions of military operations.  To represent a particular COA, scenario 

information from a graphical sketch pad was fused with information from a natural 

language description of the COA by a program called the Fusion engine. The combined 

description of the COA was represented in CYC's MELD language and then fed to five 

independent critiquing systems built by different teams.  Only one of the critiquers was 

using CYC directly and did not have to translate the Fusion engine output.  All others had 

to use some form of translation system.  Many different scenarios had to be handled in a 

tight evaluation schedule, thus, manual translation was not an option.  OntoMorph was 

chosen to translate the Fusion output for the critiquer based on the EXPECT knowledge 

acquisition system [Gil, 1994] which uses Loom to represent its knowledge.  What 

follows is a list of translation issues that arose, and how they were solved: 

2.5.1.1 Different Names: 
While most of the names generated by the Fusion engine were shared by the EXPECT 

critiquer, some of them differed due to parallel independent development of critiquers 

and ontologies as well as personal style.  Renaming was taken care of with simple rules 

like the following: 

(DEFRULESET rename-collection 
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  Fix-MilitaryTask ==> FIX 
  {ProtectingSomething |  
   ProtectingPhysicalRegion} ==> PROTECT 
  Translation-LocationChange ==> MOVE 
  ...) 
 

2.5.1.2 Different Syntax: 
OntoMorph started with a KIF translation of the Fusion output which still contained 

various MELD idioms that needed to be translated into Loom syntax.  For example, isa 

assertions such as(isa task1 Fix-MilitaryTask) had to be translated into the 

Loom idiom (FIX task1) (which here also involved a name change).  MELD frame 

predicates were also easily translated into Loom with the following rule: 

(DEFRULESET rewrite-frame-predicate 
  (relationInstanceExistsCount 
    ?relation ?instance ?type ?count) 
  ==> (:ABOUT <rewrite-term ?instance> 
        (:EXACTLY ?count  
          <rename-relation ?relation> 
          <rename-collection ?type>))) 
 

2.5.1.3 Different Representations: 
The most challenging difference to overcome was the different representations used to 

represent the purposes of tasks.  The Fusion engine used an idiom that related a task with 

a proposition whose truth was supposed to be brought about by carrying out the task. For 

example, to state that the purpose of the task carried out by BlueDivision1 was to 

protect Boundary1, the following representation was used: 

(taskHasPurpose BlueDivisionTask 
  (thereExists ?p 
    (isa ?p  
         (CollectionSubsetFn  
           ProtectingSomething 
           (TheSetOf ?obj 
             (and (objectTakenCareOf  
                    ?obj Boundary1) 
                  (performedBy  
                    ?obj BlueDivision1))))))) 

 

This can roughly be paraphrased as follows: The purpose of BlueDivisionTask is to 

bring about the existence of an event ?p that is an instance of the event type 

ProtectingSomething restricted by the set of events in which BlueDivision1 
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takes care of Boundary1 (the restriction is expressed via the CollectionSubsetFn 

construction). This representation goes far beyond the expressiveness of Loom which 

does not have a way to represent higher-order sentences such as the above.  It also did not 

meet the requirements of the EXPECT critiquer, which needed a reified purpose 

representation such as the following: 

(AND (PROTECT protect00) 
     (PURPOSE-ACTION protect00) 
     (PURPOSE-OF BlueDivisionTask protect00) 
     (ACTION-OBJ protect00 Boundary1) 
     (WHO protect00 BlueDivision1)) 

 

The final version of the Fusion engine only used three structurally different purpose 

representation patterns.  Each of them could be handled by an OntoMorph rule such as 

the following: 

(DEFRULESET rewrite-purpose-pattern1 
  {(taskHasPurpose ?task 
     (thereExists ?var 
       (isa ?var  
            (CollectionSubsetFn 
              ?type  
              (TheSetOf ?action ?body))))) 
   <generate-unique-name  
     <rename-collection ?type>> 
   ?purpose} 
  ==> (AND 
        (<rename-collection ?type> ?purpose) 
        (PURPOSE-ACTION ?purpose) 
        (PURPOSE-OF ?task ?purpose) 
        <rewrite-purpose-setof-body  
          ?body ?action ?purpose>)) 

 

The mapping between the two representations is very direct and makes good use of 

OntoMorph's destructuring facilities for syntax trees. The only complication is the extra 

right-hand-side function call to create a skolem individual needed to represent the reified 

purpose. This is taken care of by a call to the built-in function generate-unique-

name which bases the generated name on the supplied argument (in this case, the 

renamed base event type).  It does not consume anything from the input stream but 

simply pushes the result back onto it where it is then consumed by the ?purpose 

variable. 
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2.5.1.4 Missing Representations: 
Some information needed by the EXPECT critiquer such as COA substructure and 

task/subCOA associations was not explicitly represented and needed to be recovered by 

some of OntoMorph's semantic rewrite features, e.g., by keying in on "meta-information'' 

such as where in the Fusion output certain assertions were made. 

For example, to associate a task with a particular subCOA, it was necessary to track what 

tasks were performed by what unit which was handled by the following two rules: 

(DEFRULESET track-COA-assertion 
  (unitAssignedToTask ?task ?unit) 
  ==> <!ASSERT  
        (AND (Term ?task) (Term ?unit) 
             (unitAssignedToTask  
               ?task ?unit))>) 
 
(DEFRULESET get-task-assigned-to-unit 
  {?unit  
   <@RETRIEVE \?t  
     (= (unitAssignedToTask \?t) ?unit)>  
   ?task} 
  ==> <OBJECT-NAME ?task>) 

 

The first rule creates a PowerLoom assertion for each unitAssignedToTask 

statement in the Fusion scenario. PowerLoom expects all its objects to be typed before 

they are used which is the reason for the additional Term assertions.  The second rule 

retrieves the task recorded for a particular unit which was then used to associate it with 

the sub-COA in which the particular unit was involved.  Note, that the ?t variable within 

the PowerLoom retrieve statement is escaped, since it is a retrieval variable and not a 

pattern variable of the rewrite rule. The ?unit variable, however, is a pattern variable, 

thus, its binding is substituted before the retrieval is executed and is seen by PowerLoom 

as an ordinary constant. 

The complete translator was comprised of about 30 rulesets, 10 of which were necessary 

just to track unrepresented COA structure.  The size of the translator was about 15 

kilobytes of text. 
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2.5.2 Rosetta Agent Translation Service 
Rosetta is a prototype of an ontology-based translation service operating in a domain of 

planning agents.  It reengineers some aspects of a technology integration effort described 

in [Cox & Veloso, 1997] which connects the ForMAT case-based planning tool 

[Mulvehill & Christey, 1995] with the Prodigy/Analogy planner [Veloso, 1994; Veloso et 

al. 1995].  In the original experiment, special-purpose translators were constructed to 

allow ForMAT and Prodigy/Analogy to communicate.  Rosetta is an attempt to show 

how these translators can be replaced with a more flexible, general-purpose translation 

architecture that promotes reuse and that can scale up to large numbers of heterogeneous, 

communicating agents.  The full motivation and details of the Rosetta architecture are 

given in [Blythe et al., 2000].  Here we will only touch on some aspects and how they are 

handled by the OntoMorph system. 

The main idea behind Rosetta is that it provides a representation interlingua in 

conjunction with a repository of broad-coverage as well as domain-specific ontologies 

that can be used to represent content expressions exchanged by heterogeneous 

communicating agents. Each agent is associated with a wrapper that (1) translates its 

message content language into the interlingua used by Rosetta, and (2) if necessary, 

aligns terms of the agent ontology with Rosetta's ontologies.  Within Rosetta, each agent 

is associated with a model that represents relevant aspects of the agent's domain.  As 

motivated in Section 2.3, using the same KR language and system to model a domain 

does not by itself eliminate the need for translation, since different representations can be 

used to express the same semantic content.  To facilitate translations between such 

different representations, Rosetta has a library of representation reformulation rules. 

To translate a message between agents A and B, agent A first uses its wrapper to translate 

the message content into Rosetta's format and sends it to Rosetta.  Rosetta then checks 

whether any reformulation rules need to be applied to make the message understandable 

by agent B, and, if so, applies them.  The resulting message is then sent to agent B which 

uses its own wrapper to translate it into its internal format.  One of the advantages of this 

architecture is that the portion of the necessary translation mappings encodable in the 

wrappers grows only linearly with the number of different agent classes. 
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The uses of OntoMorph within this scenario were twofold: (1) It provided an obvious 

solution to implement the agent wrappers by primarily relying on its syntactic rewriting 

features.  (2) Its semantic rewriting features were used to implement the necessary 

representation reformulation rules.  For example, the following top-level rule was used to 

translate a goal posted by the ForMAT planning tool into the Rosetta representation 

(note, that only the most relevant aspects of these rules are reproduced to save space): 

(defruleset format-to-rosetta-wrapper 
  {(:goal ?goal) 
   <translate-format-goal-to-rosetta ?goal>  
   ?translated-goal} 
 ==> 
  (message  
    (content 
      (find (object plans) 
            (for (Objective-Based-Goal 
                    ?translated-goal)))) 
    ...) ...) 

 

This rule translates a ForMAT request such as 

(:goal  
  (G-144 :Send-Hawk  
         ((force 42nd-Batt) 
          (geographic-location Big-Town)))) 

 

into the following representation understandable by Rosetta (the message content 

language used for this prototype is based on the verb clause goal language used by the 

EXPECT system): 

(message  
  (content 
    (find (object plans) 
          (for (Objective-Based-Goal 
                 (send-unit  
                   (object 42nd-Batt) 
                   (to Big-Town)))))) 
  ...) 

 

Once this message arrives at Rosetta, it is handled by its top-level translation rule whose 

main purpose it is to trigger the translation of content expressions: 

(defruleset translate-rosetta-message 
  {(message 
    {(content ?content) | 
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     ...}*4-4) 
   <map-performative ?content>  
   ?mapped-performative} 
 ==> 
  (message 
    (content ?mapped-performative) 
    ...) ...) 

 

One of the interesting aspects of the communication between ForMAT and  

Prodigy/Analogy is that ForMAT uses an objective-based or verb-centered representation 

such as "send troops to X'' to represent its goals.  Prodigy/Analogy, on the other hand, 

needs to be given a state-based goal representation such as "troops deployed at X'' to 

generate a plan. To be able to represent these different kinds of goals as well as other 

planning-related aspects, Rosetta employed the PLANET ontology developed by Blythe 

and Gil [Blythe et al., 2000].  To translate between objective-based and state-based goals, 

Rosetta uses a (heuristic) reformulation rule that looks for the primary effect of the 

planning operator describing the objective-based goal to serve as its state-based 

translation.  Here are two of the central reformulation rules involved in this mapping: 

(defruleset map-objective-to-state-based-goal 
  {?goal-instance ??roles 
   <find-equivalent-operator ?goal-instance>  
   ?operator 
   <get-primary-effect ?operator> ?effect} 
 ==> 
  (State-Based-Goal  
    <map-operator-and-roles  
      ?operator ?effect (??roles)>)) 
 
(defruleset find-equivalent-operator 
  {?goal-instance 
   <@most-specific-named-descriptions 
     <retrieve-tuples all \?op 
      (and (member-of ?goal-instance \?op) 
           (context-of 
             \?op <get-agent-model  
                    <current-receiver>>) 
           (exists \?effect 
             (role-type primary-effects  
                        \?op \?effect)))>> 
   ?equiv-operator} 
 ==> 
  <object-name ?equiv-operator>) 

 

The first thing Rosetta does is to find a planning operator in its model of the 
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Prodigy/Analogy agent that is a suitable match for the operator requested by ForMAT.  It 

does so by looking for the most specific operator description that matches the description 

of the goal posted by ForMAT by using a PowerLoom subsumption test.  After the 

operator is found, its primary effect is used as a state-based goal description that can be 

passed on to Prodigy.  Once the top-level translate-rosetta-message rule 

terminates, the translated message looks like this and is sent to Prodigy: 

(message  
  (content 
    (find (object plans) 
          (for (State-Based-Goal 
                 (is-deployed 
                   (object 42nd-Batt) 
                   (at Big-Town)))))) 
  ...) 

 

Finally, the Prodigy/Analogy wrapper translates that into the following, which can be 

sent directly to the planner: 

(:find-plans  
   (is-deployed 42nd-Batt Big-Town)) 

 

The Rosetta application provides a nice testbed for all aspects of OntoMorph.  Syntactic 

rewriting is exercised in the agent wrappers, semantic rewriting is exercised to perform 

representation reformulations, and a mixture of both controls the scripting of the overall 

translation process.  Furthermore, the tight integration with the PowerLoom KR system 

and the interpreted nature of the rewrite rules provide for a very productive, incremental 

development cycle. 

2.6 Related Work 
Ontolingua [Gruber, 1993; Fikes et al., 1997] is an attempt to avoid the translation 

problem by providing a centralized ontology repository that encourages reuse, and an 

ontology specification language that serves as an interlingua whose representational 

primitives can be translated into a variety of target KR languages by special-purpose 

translators.  However, since the generated translations cannot be controlled, 

modifications such as changing modeling conventions or performing semantic shifts is 

not possible.  While avoiding translation is always a good strategy, it is not always 
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possible such as in the case of distributed, heterogeneous agents.  Using one big, 

centralized ontology as done by CYC has similar drawbacks.  In particular, it becomes 

problematic when a smaller system that only relies on a portion of the ontology needs to 

be fielded.  Another alternative to translation is the use of lifting axioms as done in 

[Frank et al., 1999].  Lifting axioms can only be used in systems expressive enough to 

support them.  Another drawback is that they perform translations via logical inference at 

query time, which could be prohibitively expensive. 

Since part of OntoMorph can be viewed as a parser specification system, it is legitimate 

to ask how it compares to other parsing technology such as YACC, definite clause 

grammars, natural language parsers such as ATNs, etc.  YACC parsers are only 

applicable to context-free languages that are LR(1), which is too restrictive for a general-

purpose translation system.  Natural language parsers such as ATNs could in principal be 

used to implement a rewrite system, but since they are geared towards parsing of natural 

language sentences instead of arbitrary syntax trees, the specification would be less direct 

and more difficult.  Definite clause grammars probably come closest to our desiderata for 

direct and concise specification of transformation rules, however, extra support would be 

necessary to support certain conveniences of the OntoMorph pattern language such as 

sequence variables and bounded repetition of compound patterns. Additionally, the 

integration with a KR system such a PowerLoom would still be missing which is a 

crucial part of OntoMorph's utility. Similar objections hold for languages such as POP-11 

which already provide some of the pattern match functionality needed by OntoMorph, 

but lack the combination of features and the integration with a KR system such as 

PowerLoom. 

2.7 Future Work: Ontology Merging 
One of the primary motivations for the development of OntoMorph was to support 

merging of overlapping ontologies.  Merging two or more source ontologies into a 

merged ontology involves the following steps: 

1. Finding semantic overlap or hypothesizing alignments. 

2. Designing transformations to bring the sources into mutual agreement. 
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3. Editing or morphing the sources to carry out the  transformations. 

4. Taking the union of the morphed sources. 

5. Checking the result for consistency, uniformity, and  non-redundancy and 

if necessary repeating some or all of the steps  above. 

These steps have different degrees of difficulty and are supported to various degrees by 

the state of the art.  For example, techniques for hypothesizing alignments have been 

developed during large-scale ontology merging tasks as described in [Knight & Luk, 

1994; Hovy, 1998; McGuinness et al., 2000], and consistency checking is already fairly 

well supported by today's KR systems.  Designing the necessary transformations is 

probably the most difficult and least automatable task, since it involves understanding the 

meaning of the representations.  Additionally, this step often involves human negotiation 

to reconcile competing views on how a particular modeling problem should be solved. 

At the center of every merging operation is step 3, since before ontologies can be merged 

they have to be transformed into a common format with common names, common 

syntax, uniform modeling assumptions, etc., which always involves some of the 

transformation operations described in Section 2.3.  Since merging is an iterative process, 

it is very important that these transformations can be specified easily and carried out 

repeatedly and automatically with a tool such as OntoMorph.  This is even more 

important in the context of tracking changes to one of the sources in a later re-merge.  

Without a clear and executable specification of the transformations used in the initial 

merge, much of the merging work has to be redone by hand. By using a tool such as 

OntoMorph, many of the necessary transformation rules will be reusable as is, and only 

the changed and extended portions of the modified source ontology will require adapted 

or new rewrite rules. 
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3 Determining Decisive Points through Case-
Based Reasoning 

3.1 Overview 
 
The DARPA High Performance Knowledge Bases (HPKB) program has detailed a 

number of real military problems that challenge the current state of the art in artificial 

intelligence and knowledge based systems.  These problems cover areas where automated 

solutions could greatly benefit the military, but where automation has proven difficult 

with traditional methods.  Below we describe our solution to one of these problems: 

determining focus points for military planners. 

One of the most difficult tasks in military planning is determining an appropriate point of 

focus, called a decisive point.  A military decisive point is the point on a battlefield where 

a military course of action (i.e., plan) should be directed.  Military experts believe that 

identifying effective decisive points is an art, where proficiency comes only through 

experience [Jones, 1999]. Experts find it difficult to verbalize their problem-solving 

knowledge and cannot easily teach decisive point reasoning.  Consequently, it has proven 

difficult to automate this process with traditional expert systems technology. 

Our solution avoids this knowledge acquisition bottleneck by acquiring knowledge from 

examples rather than expert rules.  Even when experts cannot describe their reasoning, 

they can provide examples or case histories of decisive points.  These examples can be 

used as a case base for a case-based reasoner or as a set of training examples for an 

inductive learning algorithm.  In both situations, the examples provide significant 

knowledge content.  While both case-based reasoning and inductive learning are valid 

solutions, this paper focuses on the case-based reasoning approach. 

The decisive point problem presents two important challenges to case-based reasoning: 

how to manage structural case knowledge and how to fuse expert, rule-based knowledge.  

Most case-based reasoning applications operate on flat feature vectors and are 

incompatible with relational representations.  The decisive point case knowledge, 

however, is inherently relational and does not lend itself to a feature vector 
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representation.  The second challenge concerns existing expert knowledge.  In the 

decisive point problem, experts cannot provide a complete solution but can provide 

knowledge fragments that are useful in determining decisive points.  A successful case-

based reasoner must leverage both rule-based and example-based knowledge. 

Below we present a novel case-based solution to the decisive point problem that 

addresses each of these challenges.  The reasoner is part of the KILTER learning toolset 

within the PowerLoom knowledge representation system and uses an innovative 

combination of nearest neighbor, graph search, neural networks, and natural deduction to 

build, match, and reason with relational case knowledge.  Since the reasoner is 

implemented within PowerLoom it also exploits any existing rule-based knowledge about 

the problem.  Such an approach can be thought of as knowledge-rich cased-based 

reasoning. 

3.2 The Decisive Point Problem 

3.2.1 Problem Description 
A course of action (COA) is defined by the US military as a sketchy plan that describes 

how a military unit will carry out its mission. COAs are generated by a military planning 

staff through a well-specified process called the military decision-making process, where 

numerous competing COAs are developed and analyzed. All COAs have a point of focus, 

called the decisive point, where the military directs its combat effort.  Decisive points 

normally refer to a feature on a map such as a geographic region or a specific military 

unit.1  The most effective decisive points match a military strength against an enemy 

weakness. 

Military planners place great emphasis on understanding and exploiting the best decisive 

points for a given mission.  Unfortunately, military experts agree that there is no general 

procedure for determining effective decisive points [Jones, 1999].  Decisive points are 

normally chosen from a "gut feeling'' rather than by following strict military doctrine.  

Military students become adept at recognizing good decisive points simply through trial 

                                                 
1Decisive points properly refer to a physical location and a time.  Here we are concerned 
only with the physical component. 
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and error.  Given numerous examples of decisive points and direct feedback on whether 

the missions were accomplished, students begin to form an internal model of good and 

bad decisive points.  Unfortunately, students and experts find it difficult to translate this 

model into a concise set of rules. A typical response when asked what make something a 

good decisive point is "I know it when I see it.'' 

While experts cannot provide a complete set of rules to describe their reasoning, they can 

provide some knowledge fragments that are incomplete, but still useful.  Some of this 

knowledge is domain general such as knowledge about geography and geographic 

relations (e.g., directions, relative distances, betweenness, etc.) and some is specific to 

decisive points.  One example of a domain specific knowledge fragment is the fact that 

linear features such as rivers, borders, and phase lines are not good decisive points 

because they do not provide a single point of focus.  An example of domain general 

knowledge is the fact that if x is east of y, then y is west of x.  In addition to these 

knowledge fragments, experts can provide examples of their decisive point choices along 

with a measure of goodness.  The goodness measure may come from an evaluation in a 

simulator or may be artificially generated by the expert. 

The challenge problem is as follows.  Given several knowledge fragments from experts 

and a set of decisive point cases, build a system to evaluate future decisive points.  The 

system should input all scenario and mission related information and output a ranking of 

the best decisive points. 

3.2.2 A Case-Based Reasoning Solution 
Given the lack of existing knowledge and the availability of decisive point examples, a 

machine learning approach seems appropriate. Case-based reasoning is a branch of 

machine learning that has many pseudonyms including instance-based learning, lazy 

learning, and nearest neighbor.  The tenet of case-based methods is that solutions to 

previous problems should be explicitly adapted and reused in similar future problems. 

Figure 4 gives a basic case-based algorithm.  Each example is explicitly stored in a case 

base.  Once a query example is presented, the reasoner passes through two phases: case 

matching and solution adaptation.  In the matching phase, the reasoner compares the  
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Figure 4: Case-based Reasoning High Level Algorithm.  In the decisive 
point problem, x refers to a decisive point description and f(x) refers to the 
goodness of the decisive point. 

 

query example to each stored case and computes a distance measure.  In the adaptation 

phase, the solutions from the cases with the lowest distance are combined and adapted to 

fit the query.  Combination and adaptation are normally problem-specific procedures. 

We adopted a case-approach over other machine learning methods for several reasons.  

First, we've found military experts to be very receptive to case-based reasoning because it 

often reflects their own reasoning.  They understand the high level case-based algorithm 

and are more likely to trust its answer than, for example, a neural network, which 

operates more as a black box.  Second, case-based reasoning provides human-

understandable explanations.  Along with the answer, a case-based approach can provide 

the relevant cases used to compute the answer.  Other learning systems are not as 

verbose.  For example, a rule induction algorithm often generates rules which do not 

make any sense to the user and consequently its explanations are often readable but not 

meaningful [Pazzani, Mani & Shankle, 1997]. 

The final motivation for case-based reasoning is that case-based methods do not form an 

explicit representation of the hypothesis and thus have almost no computational overhead 

at training time. Rule induction methods build a set of rules and neural network methods 

form a neural network.  A case-based method simply stores all of the training examples, 

which is why it is often called lazy learning.  The advantage of being lazy is that it does 

not have to recompute its hypothesis when new training examples are provided.  It simply 

stores them with the others.  Other learning methods have to adjust or often recompute 

their explicit hypothesis representations any time new training examples are provided, 

which creates a significant overhead expense. Of course, case-based methods have 

For each training example (x, f(x)), add the example to case base, C  
Given a new query example xq  
       Find the k examples, xi . . . xk, in C nearest to xq 
       Return a combination of f(xi) . . . f(xk) 
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computational overhead also, but it comes only when queries are issued, not when 

training examples are added.  In our experience, experts are often happier to wait when 

the system is answering a question than when they are simply updating it. 

3.2.3 Technical Hurdles 
We identified two major challenges in applying case-based reasoning to the decisive 

point challenge problem: managing structured case knowledge and fusing rule-based and 

example-based knowledge. Unfortunately, most case-based applications do not address 

either. This section outlines these challenges and relates their importance to the decisive 

point problem. 

3.2.3.1 Relational Case Knowledge 
 
When evaluating a potential decisive point, experts rely on several different sources of 

knowledge.  They consider the overall mission and its objectives, knowledge about the 

terrain and other geographic features, and knowledge about specific military units.  Since 

these sources are critical in evaluating a decisive point, they should be included in the 

decisive point case description.  In other words, a decisive point case should include all 

features or characteristics that lead experts to conclude that this is a good or bad decisive 

point. 

It is difficult to imagine a non-relational representation for this type of knowledge.  

Consider knowledge about the terrain, which describes different geographical features 

such as rivers, mountains, and roads.  These objects have basic properties such as 

position, length, and width, but the most interesting characteristics are how they are 

related to one another.  For example, a mountain may be between two military units, and 

would indicate that these units are blocked from each other.  This type of knowledge 

requires relations between specific instances and resembles a structured hypergraph 

where nodes reflect instances and arcs represent relations. Figure 5 gives an example of 

the type of relational knowledge in decisive point cases. 
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Figure 5: A partial decisive point description. 

 

Unfortunately, almost all implementations of case-based reasoning operate on a flat set of 

feature values and cannot match relational cases [Gebhardt, 1997; Kolodner, 1993]. Thus, 

a case-based solution to the decisive point problem requires either an algorithm to 

translate the relational knowledge into a feature vector representation or a case-matcher 

that can directly compare structured cases.  In Section 3.3.2, we describe a case-based 

system that uses both strategies. 

A second problem with relational case knowledge concerns the dimensions along which 

two cases are compared.  Traditional case-based methods assume that this information is 

given a priori (e.g., features in the feature vector).  Unfortunately, when reasoning with 

structured knowledge we are normally not afforded this luxury.  For example, decisive 

point cases can be described using any number of instances, properties, and relations.  In 

other words, there is no single convention for describing a decisive point case; each is 

likely to have a different knowledge structure.  Since we do not have a set of properties 

and relations common to all cases, we must devise another strategy for generating the 

relevant dimensions for comparison. 

3.2.3.2 Combining Rule-based Knowledge with Examples 
Traditional case-based reasoning methods utilize one source of knowledge: the case base.  

Case-based reasoning, along with most machine learning methods, normally ignore any 

existing rule-based knowledge about the domain. The rationale is twofold. First, in most 



 

 36

cases training data is plentiful and good performance can be achieved with examples 

alone. Second, it is not obvious how these methods could exploit such knowledge. 

In the HPKB decisive point challenge problem, the training data was rather sparse.  We 

were given only 50 cases of previously identified decisive points, which, given the 

complexity of the problem, represents a limited sampling of the overall problem-space 

distribution.  Thus, to achieve higher levels of performance, one cannot rely on examples 

alone. 

Unfortunately, little work has been done to develop methods that combine both rule-

based and example-based knowledge.  Typically, builders of intelligent systems fall into 

one of two camps.  The knowledge engineering camp builds everything from expert 

rules.  The machine learning camp learns everything from examples.  This problem 

requires elements of both to be successful. 

3.3 Knowledge-Rich Case-Based Reasoning 
To overcome the challenges outlined in the previous section, we implemented a case-

based reasoning module in the PowerLoom knowledge representation system.  The 

reasoner combines nearest neighbor, neural networks, graph search, and natural 

deduction to reason effectively with relational, example-based knowledge and rule-based 

knowledge.  We characterize this approach as knowledge-rich case-based reasoning. 

The overall algorithm for ranking decisive points is given in Figure 6 and can be 

summarized as follows.  Cases are stored in PowerLoom as a set of relational facts.  

Criteria for comparing two cases are generated from the case base using a graph search 

algorithm called GSA.  PowerLoom then maps each case into the criteria and constructs 

match vectors.  The match vectors are fed into a neural network which is trained to build 

a compact, semantically-rich representation for each case.  The semantic representations, 

called signatures, are stored in the case base to be matched by queries. 
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Figure 6: Decisive point algorithm 

 
Given a new scenario, the algorithm evaluates each map feature (e.g., geographic regions, 

military units, cities, etc.) as a potential decisive point.  Given a map feature, the 

algorithm first queries PowerLoom to determine if any rules match this feature and can 

infer goodness.  If goodness cannot be inferred through a rule, the algorithm invokes the 

case-based reasoner.  The trained neural network computes a signature for the map 

feature which is subsequently compared to the signatures in the case base using standard 
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Euclidean distance.  The goodness of the map feature is the distance-weighted average of 

the goodness of the top three closest matching cases.  Once all features have been 

evaluated, the top three points are returned. 

The case-based algorithm follows a general k-nearest neighbor strategy with several 

innovations for managing structured cases and existing rule knowledge.  The remainder 

of this section describes these enhancements and how they contributed to the success of 

the decisive point reasoner. 

3.3.1 Generating Match Criteria 
To judge similarity between two cases, one must know the dimensions along which cases 

may vary.  Unfortunately, as described in Section 3.2.3.1, such criteria is not obvious 

when using relational case representations. This section describes an algorithm called 

GSA (Generalized Structural Assertions) that uses a heuristic approach to generate match 

criteria from a relational case-base.  GSA capitalizes on one simple idea: the most 

important criteria for judging similarity between any two cases is the set of facts that 

have been used to describe the cases.  In other words, rather than including all predicates 

that could be used to describe a case, GSA only includes predicates that actually have 

been asserted. 

The GSA algorithm can be broken down into two main phases.  In the first phase, GSA 

collects and generalizes the set of asserted facts describing each case in the case base.  

GSA traverses the structure of each case depth-first to a given depth and records all links.  

The algorithm follows that of Emde [1996] and is as follows. Starting with the root 

instance of the case, generate and record all directly asserted facts.  Repeat this process 

for each new instance found in the new facts until a specified depth limit d is reached. 

The knowledge structure in Figure 5 represents the asserted facts at depth limit two for a 

case rooted at EA1. 

After collecting the facts, GSA generalizes the facts, creating a generalized knowledge 

structure. Generalization broadens the scope of the assertions to apply to many cases 

rather than one specific case. GSA generalizes by substituting variables for instances. 
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Specifically, variables are substituted for all instances linked to the root instances with 

less than d relations.  In other words, all non-leaf instances are variablized. 

Figure 7 shows the generalization of the Figure 5 knowledge structure.  By variablizing 

the assertions, other cases can be matched into the structure simply by generating 

bindings for the variables.  For example, a case might be similar to the EA1 decisive 

point, because it is near a river and is part of a protect task.  Without generalization, a 

matching case would have to be near River5 and be part of Mission1. 

 

Figure 7: A generalized knowledge structure.  Variables are substituted  
for all non-leaf instances. 

 
The second stage of GSA concerns folding in generalized knowledge structures from 

multiple cases.  A naive combination strategy would simply attach each structure under a 

common root node.  This strategy, however, ignores overlap between knowledge 

structures and creates an unnecessarily complicated unification.  A better strategy when 

folding in a new knowledge structure is to only add structure that is not present in the 

unified structure.  Unfortunately, finding the largest common overlap among knowledge 

structures is an instance of the largest common subgraph problem, which is known to be 

NP-Hard. Therefore, GSA uses a heuristic algorithm to find the common knowledge 

structure and does not guarantee the simplest unification. 

Figure 8 illustrates the GSA structure combination process. GSA starts unifying at each 

root node (?X in Figure 7) and moves down the graph attempting to align variables.  The 

GSA folding algorithm is as follows.  First, sort the generalized assertions based on the 
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distance from the root node.  The distance of an assertion from the root is the smallest 

number of relational links that connect a single argument in the assertion to the root 

variable.  For example, in Figure 7 the assertion NorthOf(?V4,?V3) has a distance of 1, 

since ?V3 can be linked to the root, ?X, using a single relation Near.  Sorting ensures that 

GSA unifies all variables close to the root before moving to the assertions deeper in the 

graph. 

 

Figure 8: An example of structure folding in GSA.  The figure illustrates 
folding three different knowledge structures into one unified structure.  
The first structure is simply copied to the empty unified structure.  In the 
second example, variable ?V4 is unified with variable ?V1, since they both 
share the relation r1 from ?X. 

 

Second, for each assertion in the sorted knowledge structure attempt to find a matching 

assertion among the unmatched assertions in the unified knowledge structure.  Two 

assertions match if they contain the same predicate and there is no conflict between their 

New Slruclure UnLfted SUuctuie VaiiabTe Substitutions 

W1 = ?V4 

?V1 = ?V6 
W7 = ^V5 
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arguments. Argument conflicts occur when a common variable between the two 

assertions appears in different argument positions.  The result of the assertion match is a 

set of variable substitutions necessary to complete the match.  For each match, GSA 

deletes the matching clause from the sorted knowledge structure and propagates the 

variable substitutions through the remaining clauses.  The final folding step adds all 

unmatched assertions in the sorted knowledge structure to the unified knowledge 

structure.  The unmatched assertions represent new knowledge that is not currently 

represented in the unified knowledge structure. 

The result of GSA is a knowledge structure that reflects the combined descriptions of the 

cases.  The structure can be thought of as the set of relevant criteria to describe a case.  In 

the next section, we will exploit this notion by using this criteria as a foundation for 

judging similarity between any two cases. 

3.3.2 Building Semantic Signatures 
A key problem with relational case knowledge comes at query time, when a query must 

be compared to all cases.  The problem is that structured cases are difficult and time 

consuming to compare.  Even with the criteria generated by GSA, structured case 

matching entails finding the largest common overlap between two graphs, which as 

mentioned before is an NP-Hard problem.  With a large, complex case base, a structure 

matching algorithm requires significant computational overhead and is likely impractical. 

One way to reduce the computational overhead is to use a preprocessing step to filter out 

cases that are unlikely to be relevant to the query and thereby reduce the number of calls 

to the structural matcher. Gentner and Forbus [1991] describe a system that uses an 

efficient literal similarity test to filter out unrelated cases.  The disadvantage of this 

approach is that it introduces a weaker comparison algorithm that may miss important 

similarities.  Thus, some cases that the structural matcher finds similar may not be 

returned because the weaker algorithm weeded them out. 

An alternative strategy is to translate the structural cases into representations that can be 

easily and efficiently compared.  One representation conducive to efficient comparisons 

is a fixed-length vector of floating point numbers.  Floating point vectors represent points 



 

 42

in a multidimensional space and can be compared using simple Euclidean distance.  The 

challenge is thus to translate a case represented by logical assertions into a fixed-length 

continuous vector, while preserving as much of the original semantics as possible.   

The remainder of this section describes an algorithm for performing such a 

transformation using PowerLoom's deductive reasoners and a neural network.  The 

approach generates signatures for each case which are compact, semantically-rich 

floating point representations.  Figure 9 illustrates the major steps. 

 

Figure 9: Transformation of a structural case into a floating point 
signature. 

3.3.2.1 Creating Match Vectors 
In the first stage of signature algorithm, PowerLoom performs a structural match between 

each case and the match criteria.  PowerLoom matches each case by binding variables in 

the match criteria to instances in the case.  Since it is unlikely that any case will match 

the entire match criteria, PowerLoom uses a greedy partial-match strategy where it binds 

variables such that the greatest number of bindings can be made.  In other words, 

PowerLoom finds the greatest overlap between the case and the match criteria.   

The result of the PowerLoom match for a given case is a set of clauses from the match 

criteria that are satisfied and a set that are not. For example in Figure 9, only two of five 

clauses,R2(?X,?V2) and R1(?V2,?V3), are satisfied by the case. By associating a score of 
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1 for each satisfied clause and a score of 0 for each unsatisfied clause, we obtain a pattern 

or footprint for the case within the match criteria.  These patterns are essentially fixed-

length binary vectors that represent which clauses in the criteria are satisfied by the given 

case.  We will subsequently refer to these patterns as match vectors.   

3.3.2.2 Neural Network Feature Weighting 
The match vectors provide a fixed-length representation that captures the semantics of 

each case.  What is missing, however, is a measure of importance for each dimension.  

Clearly, when comparing two cases, some criteria should be weighed more than others.  

For example, the type of mission is likely to be crucial in determining decisive points and 

should be weighed more in comparisons than superficial properties such as the names of 

the commanders of a unit.  Numerous methods have been proposed for feature weighting 

in case-based reasoning [Wettschereck, Aha & Mori, 1997].  Most approaches attach a 

weight to each feature and compute the match score by summing the weights of the 

matched features.  Traditionally, effective weights are found through some sort of hill-

climbing search over the weight space.  We adopt a similar strategy, but use a neural 

network rather than linear combination to compute the match score. 

The goal of the neural network learning module is twofold.  First, it learns which features 

are most relevant for evaluating decisive points and consequently how to weigh them 

when computing a match.  Second, it computes a compact, semantically-rich 

representation that can be easily matched to other cases.  The neural network is a standard 

3-layer feedforward neural network with sigmoid units in the hidden and output layer.  

The input to the network is the match vector for a given case.  The output of the network 

is the expert's evaluation of that case (a continuous value between 0.0 and 1.0), and the 

network is trained using the standard backpropagation algorithm to return the correct 

evaluation score for every case in the case base. 

Once the network has been trained, it has learned to classify all of the decisive points in 

the case-base based on the input patterns within the match criteria.  Thus, it has 

automatically learned how to weigh the different features in the input when classifying 

decisive points.  Since the neural network uses a hidden layer of units, it has also learned 

to translate the binary input patterns into a lower-dimensional continuous space 
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represented by the hidden units. The hidden unit activations capture the features of the 

input patterns that are important for classifying decisive points.  Our strategy is to use 

these activations as a semantic representation or semantic signature for each case. 

There are several advantages of the neural network semantic signature strategy.  First, it 

generates a more compact representation for each case, which for large case bases 

significantly reduces the match time. In this problem, the neural networks reduced 500 

dimensional match vectors to 50 dimensional vectors.  Second, neural networks can can 

weigh mismatch evidence as well as match evidence.  Current linear combination 

strategies only propagate positive match evidence from each feature, which in the 

decisive point problem is not always valid. For example, two bridge examples may match 

exactly, except that the military unit on each bridge belongs to different sides. This 

difference should completely change the similarity measure since in one case the bridge 

is controlled by friendly forces, and in another case it is controlled by the enemy.  It 

would be difficult to craft a set of linear feature weights to make such a large distinction 

from a single mismatched feature.  The neural network strategy can, however, separate 

these examples based on the one mismatch by mapping them into different areas of the 

hidden unit space. 

To summarize, we have developed a methodology for matching structural cases that 

builds flat semantic signatures that can be easily matched using Euclidean distance.  One 

key advantage is match time.  While our strategy still requires structure matching, it 

significantly reduces the frequency.  Ignoring training for feature weighting, a structural 

case-based reasoner requires O(CQ) structural matches, where C is the size of the case 

base and Q is the number of queries.  Our semantic signature approach requires only O(C 

+ Q) structural matches.  Since queries normally become cases, we've reduced the 

number of structural matches from polynomial to linear in the number of queries. 

3.3.3 Incorporating Rule Knowledge 
The decisive point algorithm uses existing rule knowledge in two important ways.  First, 

before invoking the case-based reasoner on a given map feature, it explicitly checks if 

any existing rule knowledge can infer goodness.  If a rule exists that covers the feature, it 

foregoes the case-base strategy and uses the rule to assess goodness. An example of this 
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type of knowledge is the rule: linear features are bad decisive points.  All rivers and 

roads match this rule and are given poor evaluation scores without querying the case 

base. 

A second way that the decisive point algorithm uses rule knowledge is in structural case 

matching.  Recall from the previous section that PowerLoom's partial matcher is used to 

match each case into the match criteria.  Structural matching entails finding bindings for 

variables in the match criteria such that as many clauses are satisfied as possible.  When 

satisfying a clause, PowerLoom uses any available inference rules to generate a deductive 

proof.  For example, suppose a clause in the match criteria specifies East(?X,?V1), but 

there is no corresponding assertion in the case.  Suppose that the case does have the 

assertion West(River4,Bridge1).  Given the general rule East(X,Y) ⇒ West(Y,X), 

PowerLoom can infer East(Bridge1,River4) and satisfy the above clause. 

Utilizing rule knowledge in case matching compensates for a lack of cases.  In the 

previous example, the rule creates a second implicit case from an explicit case.  In other 

words, there was no case where East(Bridge1,River4) was explicitly asserted, but the 

rules allowed PowerLoom to infer one.  Experiments in the evaluation section confirm 

the importance of this kind of knowledge when cases are limited. 

3.4 Evaluation 
Identifying good decisive points provides an interesting challenge and knowledge-rich 

case-based reasoning appears to be a promising solution.  To test this hypothesis, we 

participated in an official HPKB evaluation conducted by the Alphatech Corporation. 

Alphatech provided expert analysis of 50 decisive point cases over 3 different scenarios 

and 9 different missions.  The cases were evenly split between positive and negative 

examples.  Each case was modeled using terms from ontologies produced within HPKB, 

which includes a portion of the Cyc knowledge base.  To complete each case, we used 

background knowledge about each scenario including the geospatial information of all 

map features and specific knowledge of each military unit.  It is worth mentioning that all 

background knowledge was modeled by others in the HPKB community and is thus 

independent of our specific reasoner.  
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For the evaluation, Alphatech provided five different problems. Table 1 summarizes our 

performance as determined by Alphatech's military experts.  Since our algorithm returns 

the top three decisive points for any scenario, Alphatech provided two measures of 

performance.  The first measures the quality of the best decisive point that we returned 

and the second measures the average of the three.  The graph shows that in every 

problem, we returned a very good decisive point.  The lowest "best'' score was 80% in 

problem 4. This result is very encouraging and shows that the reasoner recognizes the 

best decisive points. 

Problem 1 2 3 4 5
Best 100 100 100 80 100

Average 100 100 80 40 95

Table 1: Results from the HPKB evaluation.  Scores range from 0 to 100. 

Unfortunately, the average scores shows that the system was not as discriminating with 

poor decisive points.  For example in problem 4, while the system did return the optimal 

decisive point, it also returned two decisive points that were judged very poor.  From the 

evaluation numbers and expert opinions, it is clear that the system is overgeneralizing.  It 

does not miss the best points, but it does not always reject the bad ones.  An obvious 

solution to this problem is to provide more negative examples. 
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Figure 10: Learning curves for different variations of the case-based 
reasoner. 

 

To complement the Alphatech evaluation, we ran additional experiments in-house to both 

judge performance and measure the utility of the rule-based knowledge.  Figure 10 shows 

the results of several 10-fold cross validation experiments over the case base with and 

without rule knowledge.  The learning curves plot the rate at which performance 

increases with the size of the case base.  The top curve represents the full system with all 

available rule knowledge. The middle curve plots performance without knowledge 

specific to decisive points such as the fact that rivers are not good decisive points.  The 

bottom curve plots system performance without domain-general rules such as general 

geospatial relationships. 

The shape of the curves are somewhat surprising and do not reflect typical machine 

learning curves.  The most striking feature is that the learning rate actually increases with 

experience.  There is virtually no difference in performance with case base sizes of 5 to 
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30 examples, but after 30 the performance grows approximately linearly with the size of 

the case base.  Unfortunately, we have not been able to come up with a concrete 

explanation for the shape of the curves. One possible hypothesis is that they are an 

artifact of the cases.  It is unclear how representative our case distribution is over the 

actual problem distribution. 

The results do show a significant advantage to case-based reasoning with rule-based 

knowledge.  At every level of case knowledge, performance improves with rules, which 

supports our hypothesis that the rules compensate for a lack of cases.  The knowledge-

poor approaches need more cases to achieve the same level of performance as the 

knowledge-rich approach.  Interestingly, there was a greater drop off without the general 

rules than without the domain specific rules. Since general rules apply to more situations, 

their impact is felt more often and thus when they are removed the system suffers a 

greater performance hit. 

The overall assessment by the military experts is that our approach is the most promising 

solution to the decisive point problem to date. The system is currently not strong enough 

to serve in real planning efforts, but the experts agree that the currently limiting factor is 

the lack of cases, not the technology.  Given more cases (especially negative examples) 

and additional rule-knowledge, the knowledge-rich case-based reasoner could provide a 

valuable military planning tool. 

3.5 Conclusions 
Determining decisive points is a challenging military problem, where the lack of expert 

rules precludes a complete expert system or rule-based solution.  Case-based reasoning 

offers a promising solution since knowledge is acquired from examples rather than rules. 

However, traditional methods are inadequate because they cannot match structured cases 

and do not incorporate existing rule knowledge.  We addressed each of these challenges 

in a new case-based reasoner within the PowerLoom knowledge representation system 

that we characterize as knowledge-rich case-based reasoning.  The PowerLoom case-

based reasoner combines nearest neighbor, graph search, neural networks, and natural 

deduction to learn effective match criteria, perform structural matches, and leverage off 



 

 49

of existing rule-based knowledge. Experiments in the HPKB program show that our 

approach is more effective than any other decisive point solution to date. 
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4 Java-Based Graphical Knowledge Editor 

4.1 Overview 
Below we describe the PowerLoom knowledge editor (or GUI), a Java-based graphical 

client for the PowerLoom Knowledge Representation and Reasoning System.  We first 

describe the architecture of the PowerLoom GUI, and discuss design issues and tradeoffs.  

Next, we present an overview of the GUI, highlighting high-level functionality.  We then 

present a comprehensive list of the features and capabilities that are currently present in 

the GUI.  Finally, we conclude with some possible future directions for the GUI.    

4.2 Architecture 

4.2.1 Client/Server Architecture 
In the traditional client/server (a.k.a. 2-tier) model, a “smart” client application 

communicates with a “dumb” datastore such as an RDBMS or file system.  More 

recently, the 3-tier (or “n-tier”) model has become popular, in which a “dumb” client 

such as an HTML browser communicates with a “smart” middle tier which contains the 

application's business and presentation logic, and which in turn communicates with a 

back-end datastore.   Likewise, in the 1-tier model, a client and server share the same 

process space.  An example of a one-tier application is a word processing application 

which stores data in a flat file. 

The architecture for the PowerLoom GUI most closely resembles the client/server model.  

The GUI component is a Swing-based Java client which communicates with a remote 

version of the PowerLoom KRRS.  Since the GUI does not contain a great deal of 

business logic (e.g., it does not know how to do inferencing), it does not directly map 

onto the traditional notion of a smart client.  Similarly, since PowerLoom is much 

“smarter” than a typical DBMS, it does not cleanly map onto a traditional backend server.  

However, since the GUI contains the presentation logic, it is more similar to a 2-tier 

model than a 3-tier model in which the presentation logic resides on the middle tier.  

The GUI has been designed in such a way that it can be “baked-in” with a Java version of 

PowerLoom.  In this mode, the client runs in the same process as the server, and bypasses 
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the SOAP communication layer.  Although we have not yet experimented with this mode, 

it is likely that its use could result in significant performance benefits for standalone 

applications. 

Communication between the GUI and PowerLoom is done via the XML-based SOAP 

protocol.  In order to effect communication via SOAP, a Web service layer was built on 

top of PowerLoom.  This layer provides support for marshaling and unmarshaling of 

PowerLoom objects to/from XML, and also provides a PowerLoom API that is accessible 

as a web service.   The Java client uses JAXM and the Castor framework (see 

http://www.castor.org) to support SOAP communication. 

The GUI can be launched either from a shell prompt or over the web using Java Web 

Start (JWS) technology.  With JWS, users are required to do a one-time download and 

install of a JWS client application, after which they can launch any fully-functional Java 

application over the web.  This technology overcomes many of the problems associated 

with Java Applets, including their restrictive set of capabilities and browser compatibility 

issues.   

4.2.2 GUI Design Goals 
At the outset of our design effort, our biggest decision was whether to implement the 

PowerLoom interface as a Swing GUI or as an HTML-based web application.  

Ultimately, we decided that a Swing GUI better suited our needs than a Web application.  

In arriving at this decision, we considered the following requirements: 

4.2.2.1 Visibility 
Knowledge Bases are complex and loosely structured entities.  It is often desirable to 

simultaneously maintain multiple views of a KB, and to simultaneously perform multiple 

complementary task such as browsing, editing, querying, and searching a KB.  We feel 

that Swing-based applications are superior to HTML-based applications when it comes to 

displaying large quantities of complex information.  With Swing's MDI (Multiple 

Document Interface) mode, many internal frames can be open at the same time within a 

single “desktop” frame.  Swing also offers a rich set of components and UI mechanisms 

which facilitate efficient use of screen real estate.  These include the ability to resize, 
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close, and iconify windows, layout algorithms which are smart about redisplaying 

internal components, and components such as collapsible trees, scrollable subpanes, 

movable dividers, tabs, etc.  In contrast, HTML has no similar MDI capability, and 

simulating widgets such as trees can be a cumbersome programming chore. 

We designed the GUI to take advantage of Swing's presentation strengths.  We used the 

MDI mode, so browsers, editors, etc. can coexist on the same desktop.  Additionally, 

multiple knowledge browsers can be open at the same time to present different views of a 

KB.  The Knowledge Browser itself consists of multiple collapsible and resizable 

subpanes, which in turn are composed of scrollable lists and trees.  This allows a “birds-

eye” view of a Powerloom KB, in which many modules, concepts, relations, instances, 

propositions, and rules can be displayed at the same time. 

4.2.2.2 Navigability 
When exploring a KB, it is imperative that a user interface allows easy navigation 

between related objects.  HTML-based applications are excellent for applications that 

require navigation capabilities, since the primary function of a hyperlink is to navigate to 

a new HTML page.  Implementing navigation in Swing requires a bit more coding effort. 

The PowerLoom GUI has extensive navigation capabilities, which are as good or better 

than browser based applications.  For example, a user may click on a query result to 

instantly update the Knowledge Browser to display the selected object.  Also, a user can 

right-click on a relation or argument in a proposition, and navigate to the clicked-on 

object. 

4.2.2.3 Responsiveness 
For the best possible user experience, a user interface should be highly responsive to a 

user's input gestures.  This is true in two respects: 1) After initiating a gesture such as a 

mouse click or keypress, there should be a minimal delay before the appliction performs 

the intended action, and 2) “Power Users” should be able to perform complex tasks with 

a minimum number of mouse clicks, key presses, etc.  In general, Swing is more 

responsive than HTML browsers on both counts: 1) Since a significant amount of cached 

state is maintained in a Swing client, there is less need to do network round-trips to 
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retrieve information, and  2) Swing has many mechanisms to enable efficient control of 

an application, including menu accelerators and programmable keymaps that are 

associated with components. 

The PowerLoom GUI attempts to minimize network round-trips by caching large 

amounts of data.  For example, when a user points the Knowledge Browser to a module, 

a large chunk of the module is retrieved from the server and cached in the client.  Hence, 

when the user expands a tree in the browser, the GUI will not need to retrieve more data 

from the server.  Also, the GUI takes full advantage of Swing's ability to control the 

application via keyboard input.  For example, to create a new instance named newName, 

a user needs to simply type the key sequence: CTRL-I newName [RETURN]. 

4.2.2.4 Context Sensitivity 
For any given object that is displayed in a user interface, there is a set of actions that can 

be performed on that object.  Additionally, the actions that can be performed on an object 

depend on where the object is displayed.  In a browser-based application, there is only a 

single action that can be performed on a displayed object, i.e., the action that is executed 

when the object's hyperlink is clicked.  In contrast, Swing enables the use of context-

sensitive popup menus.  When a user right-clicks on an object, a list of appropriate 

actions will be presented in a menu.   

Context-sensitive menus are ubiquitous in the PowerLoom GUI.  For example, when a 

user right-clicks on a concept in the Knowledge Browser, they are presented with the 

following list of possible actions: 

 Add a new concept 

 Edit the concept 

 Edit the concept's extension 

 Instantiate the concept 

 Cut the concept 

 Copy the concept 

 Paste a concept 
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 Delete the concept. 

4.2.2.5 Editability 
Applications that support text editing often need capabilities above and beyond the 

baseline capabilities that all text widgets support: cut, copy, and paste.  In particular, 

applications that allow editing of text with a regular structure such as source code or Lisp 

expressions may take advantage of special key bindings which augment basic navigation 

and editing capabilities.  HTML browsers offer no means of enhancing a browser's basic 

text widget.  Swing, on the other hand has very powerful text components which allow 

keys to be bound to arbitrary actions.   

The PowerLoom GUI makes use of Swing's powerful text components by implementing 

a full set of Emacs-style keybindings.  These keybindings allow a user to perform such 

operations as navigating up and down a subexpression hierarchy, selecting entire 

subexpressions, and completing incomplete symbols.  In addition, matching parenthesis 

are automatically highlighted in the GUI's text components. 

4.2.2.6 Extensibility 
While it is not easy to claim that Swing applications are inherently more extensible than 

Web applications, Swing's MDI architecture and pull-down menu framework allows new 

features to be added with little disruption to the rest of the application. 

With the aid of a GUI design tool such as Sun's Forté, new internal frames can be easily 

added to the PowerLoom GUI.  We envision that additional tools such as KB Graphers or 

other KB visualization or analysis tools could be added to the GUI in the future.  Also, it 

is conceivable that the GUI code could be used as a basis for a more specific application.  

The application would have its own application-specific menus and windows, but would 

retain the general-purpose browsing, querying, and editing tools for direct manipulation 

of the knowledge base.   It should also be noted that the implementation of PowerLoom's 

Web service interface should facilitate rapid integration of applications with PowerLoom. 
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4.3 GUI Overview 
The PowerLoom GUI is shown in Figure 11.  The main application frame consists of 

pull-down menus, a toolbar, and a status bar. 

Figure 11: The PowerLoom GUI 

 
The application has the following menus: KB, Edit, Objects, Query, View, and Navigate.  

These menus are described as follows: 

 KB - The KB menu contains menu items for connecting to a server, loading, saving, 

and clearing KBs,  and opening browser and console windows.   
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 Edit - The Edit menu contains items for cutting, copying, pasting, and deleting, and 

also contains an item which opens a preferences dialog.   

 Objects - The Objects menu contains items for opening editors on various KB 

objects, including modules, concepts, relations, instances, and propositions.   This 

menu also contains an item to edit the currently selected object.   

 Query - The Query menu contains items for querying the KB, searching the KB, and 

editing a relation's extension.   

 View - The View menu contains various items for updating the appearance of the 

application, including a refresh item to bring the GUI up-to-date with the state of the 

KB on the server, and menu items for showing/hiding the application's toolbar and 

status bar.  This menu also contains items for changing the application's font – the 

demo theme changes all fonts to a large bold font suitable for demo presentations.   

 Navigate - The Navigate menu contains items for navigating backward and forward 

in a browser's selection history. 

 Window - The Window menu contains a list of the currently open windows on the 

desktop. Selecting a window brings the window to the top of the window stack, and if 

the window is iconified, it is de-iconified. 

 Help – The help menu contains an item to open an HTML help browser, and an item 

to open an About box which contains information about the PowerLoom GUI. 

Most menu items have accelerator keys that allow an item to be executed by a 

combination of keystrokes.  The detailed operation of each of the menu items will be 

elaborated further in the GUI Features section. 

The toolbar contains several buttons which provide shortcuts to menu items.  There are 

currently toolbar buttons for cutting, copying, pasting, deleting, editing an object, and 

opening a query dialog.  The toolbar may be undocked from its default position by 

dragging it anywhere on the desktop.  It may also be hidden by selecting the View -> 

Hide Toolbar menu item. 

The status bar at the bottom of the application contains information on the current status 

of the application.  The status bar is divided into two sections.  The leftmost section 
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displays the last module that was selected by a user.  The application keeps track of the 

current module in order to provide continuity between operations.  For example, if a user 

opens a browser and browses the AIRCRAFT-KB, and then opens a query dialog, it 

makes sense for the query dialog to use the AIRCRAFT-KB module instead of some 

other module.   

The rightmost section of the status bar contains messages that pertain to the current state 

of the application.  For example, if a user selects a concept and then clicks the cut toolbar 

button, a message will appear in the rightmost status bar prompting the user to select 

another concept and perform a paste action.  The status bar may be hidden by selecting 

the View -> Hide Status Bar menu item. 

Figure 11 shows a few internal frames that are open.  The function of each frame is 

identified in the frame's title bar, and each type of frame has a unique icon in it's upper 

left-hand corner.  In this example, the three open frames are used to browse the KB, 

query the KB, and edit an instance, respectively. 

A user typically follows a workflow cycle similar to the following sequence: 

1. The user launches the GUI by clicking on a hyperlink, executing a shell command, or 

clicking on a desktop icon. 

2. The GUI is loaded on the user's machine.  If the GUI was launched via JWS, JWS 

may need to download the entire application or updates to the application before 

execution begins.   

3. The GUI reads a preferences file stored in a default location on the user's local 

machine.  If this is the first time the application is being executed, a default 

preferences file is used.    The preferences file includes among other things the 

PowerLoom server that was last accessed. 

4. If the preferences file contains the last-accessed server, it attempts to connect to the 

server and query the server for a description of the server's capabilities.  If connection 

is successful, a browser window will open displaying the modules that are currently 

loaded in the server instance. 
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5. The user selects any KB files (s)he wishes to load, and instructs the server to load the 

file. 

6. The user performs some browsing, querying, and editing of the loaded KB. 

7. If any changes were made, the user saves the KB. 

8. The user repeats steps 5-7 as needed, and then exits the application. 

4.4 GUI Features 
This section provides a detailed description of the features that are available in the GUI 

application.  We describe general application-wide functionality as well as the 

functionality of specific components. 

4.4.1 Connect to Server 
The first time the GUI is started, it will not attempt to connect to any server.  To establish 

a server connection, the user must select the KB -> Connect to Server menu 

item.  This will open a dialog prompting for a host name and port.  After the user enters 

this information, a connection will be attempted.  If the connection is successful, the 

server information will be stored in the preferences file and used next time the application 

starts up. 

4.4.2 Edit Preferences 
A preferences dialog can be opened by selecting the Edit -> Edit Preferences 

menu item.  Currently, the only preference that a user can edit is whether or not open a 

browser when the application is started.  The dialog contains a checkbox asking whether 

or not the preferences should be saved.  If the checkbox is not checked, the preferences 

will remain in effect for the duration of the current session, but will not be in effect when 

the application is restarted. 

4.4.3 KB Load/Save 
In its standard configuration, PowerLoom stores knowledge bases via flat files.  The GUI 

has two options for loading and saving KB files.  The first option is to load/save files 

using the local file system, i.e., the file system that is immediately accessible to the user.  
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This option only works if the PowerLoom server has access to the same file system as the 

user.  For example, this might be true if the server was executing on the same LAN as the 

user's machine.  The second option is to load/save files using the file system that is 

visible to the PowerLoom server.  This option would be used in situations where the user 

is executing the client on a machine that is not immediately accessible to the server, e.g., 

over the Internet.  Since there are significant security risks with this option, this option is 

disabled by default.  It can be enabled by setting a flag on the server indicating that 

remote file browsing is permissible.  In order for this feature to be usable in practice, we 

would have to significantly enhance the security capabilities of the PowerLoom server 

and the GUI. 

4.4.4 Browsing 

4.4.4.1 Overview 
The knowledge browser window, shown in Figure 12, can be opened by selecting the KB 

-> Browse menu item or typing CTRL-B.  The browser provides a visual overview of 

all knowledge in the KB, and is capable of launching specialized tools such as editors, 

search dialogs, etc. 
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Figure 12: Knowledge Browser 
 

The browser consists of several subpanes which we refer to as navigation panes.  Each 

navigation pane consists of a title pane, a toolbar, and a content pane.  The title pane 

contains a title indicating what is displayed in the content pane.   The toolbar consists of 

zero or more buttons which perform actions relevant to the navigation pane.  Currently, 

two toolbar buttons are present: Add and Search.  Add adds an object associated with the 

type of navigation pane, and Search searches for objects associated with the type of 

navigation pane.  The content pane contains the actual knowledge to be displayed, such 

as a list of instances or propositions. 

There is one navigation pane for each type of KB object: Modules, Concepts, Relations, 

Instances, Rules, and Propositions.  Each internal pane is resizable by dragging the 

movable divider between the panes.  Panes may be hidden completely by clicking the 
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“collapse” arrow on the adjacent divider.  Clicking the “expand” arrow will unhide the 

pane. 

4.4.4.2 Viewing 
Navigation panes employ several visual cues to enhance the identifiability of object 

attributes.  Object types are indicated by an icon to the left of the object's name.  For 

example, modules are represented by a blue M, concepts by a red C, etc.  The status of 

propositions is also indicated visually.  An Italicized proposition indicates that the 

proposition was derived instead of asserted.  Grey propositions indicate that their truth 

value is a default value instead of a strict value. 

The main method for filling the contents of a navigation pane is to select some object in a 

navigation pane that is to the left or above it.  This is discussed in more detail in the 

section below.  However, in some cases, it is possible to modify the contents of a 

navigation pane without performing a selection.  For example, in the instance navigation 

pane, it is possible to show derived or inherited instances by right-clicking on the 

instance list and selecting an appropriate menu item.  Similarly, the relation navigation 

pane can toggle between direct or inherited relations.  Propositions and rules are by 

default displayed according to the module that is currently selected.  However, the 

contents of the proposition or rule navigation pane can be updated by selecting a more 

specific module in the View From Module combobox contained in the navigation pane's 

title bar. 

4.4.4.3 Selection 
When the browser is initially opened, a tree of modules is displayed in the module 

navigation pane, and all other navigation panes are empty.  When a module is selected, 

the remaining subpanes are populated with knowledge that is contained in that module.  

Similarly, selecting a concept in the concept navigation pane populates the relation, 

proposition, and instance panes with knowledge that is relevant to the selected concept.  

In general, selecting an object in a given navigation pane may affect the contents of 

navigation panes to the right and/or below it.  More specifically, the rules for object 

selection are as follows: 
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 Selecting a module populates the concept, relation, and instance subpanes with 

knowledge contained in the module. 

 Selecting a concept populates the relation subpane with relations that use the concept 

as a domain type, and populates the instance subpane with the concept's extension.  

The proposition and rule subpanes are populated with propositions and rules 

associated with the concept. 

 Selecting a relation populates the proposition and rule subpanes with propositions and 

rules associated with the relation. 

 Selecting an instance with no selected relation populates the proposition subpane with 

propositions that refer to the selected instance. 

 Selecting an instance and a relation populates the proposition subpane with 

propositions that contain the relation as a predicate, and the instance as an argument. 

 De-selecting an object will update the state of the browser appropriately.  For 

example, after selecting a module and a concept, deselecting the concept will refresh 

the concept, relation, instance, proposition and rule subpanes to display the 

knowledge contained in the selected module. 

The title pane in each navigation pane displays a description of the source of the 

subpane's contents.  For example, if relation the relation WINGSPAN was selected, and 

the instance AGM-130 was selected, the proposition subpane would contain the title 

“Propositions for WINGSPAN and AGM-130”. 

Each selection event is recorded in a selection history which can be rolled back and 

forward.  For example, assume user selects the AIRCRAFT-KB module and then selects 

the GUIDANCE-TYPE concept.  If the user then selects the Navigate -> Back menu 

item, the selection history will be rolled back so that only AIRCRAFT-KB is selected.  If 

the user then selects Navigate -> Forward, the selection history will be rolled 

forward to its original state so that both AIRCRAFT-KB and GUIDANCE-TYPE are 

selected. 
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4.4.4.4 Navigation 
Knowledge can be explored by expanding and collapsing nodes in hierarchical navigation 

panes such as the concept and module navigation panes.  If a tree or list is not fully 

visible, the user may use the scrollbar on the navigation pane's righthand side to scroll 

through the contents of the pane.  Detailed views of objects such as concepts and 

relations can be obtained by right-clicking the object and selecting the Edit menu item.  

To navigate to the constituent of a proposition, the user can right-click the constituent and 

then select the Navigate to... menu item.  For example, right-clicking on the GUIDANCE 

argument in the proposition (NTH-DOMAIN GUIDANCE 1 GUIDANCE-TYPE) 

presents a popup menu which displays (among other items) the item Navigate to 

GUIDANCE.  Selecting this menu item will cause the browser to display and select the 

GUIDANCE relation. 

Actions external to the browser may also update the browser's contents.  For example, 

clicking on an instance in a list of query results will cause the browser to navigate to the 

selected instance. 

4.4.4.5 Actions 
Right-clicking inside the browser will present a menu of actions that is relevant to the 

subpane that contains the mouse pointer.  The list of items will depend on whether the 

mouse is over a specific item or if it is over the background of the subpane's list or tree.  

For example, when the mouse is over a specific concept, the menu will contain items for 

cutting, pasting, instantiating, etc., but when the mouse is over the background of the 

concept's tree, the only menu item presented will be to add a new concept. 

The set of actions for each subpane that is available for each subpane is as follows: 

 Module - Add Module, Edit Module, Load (Local/Remote), Save 

(Local/Remote), Clear, Copy. 

 Concept -  Add Concept, Edit Concept, Edit Extension, 

Instantiate, Cut, Copy, Paste, Delete. If multiple concepts are selected, 

selecting Create New Concept from the background menu will create a concept 

that contains the selected concepts as parents. 
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 Relation - Add Relation, Edit Relation, Edit Extension, Copy, 

Delete, Show Inherited/Direct Relations. 

 Instance - Add Instance, Edit Instance, Copy, Delete, Show 

Direct/Derived Instances. 

 Propositions - Add Proposition, Edit Proposition, Copy, Delete, 

Navigate to Constituent, Edit Constituent. 

 Rules - Add Rule, Edit Rule, Copy, Delete, Navigate to 

Constituent, Edit Constituent . 

4.4.5 Editing/Viewing 

4.4.5.1 Overview 
Objects may be edited by right-clicking the object and selecting the Edit item menu item 

in the popup menu.  Alternatively, an object may be selected, and then the Objects -> 

Edit Object menu item can be selected, or the edit toolbar button can be pressed.  Object 

editors do double-duty as object viewers, since all relevant information is present in the 

editor.   

There are several common user actions that are available in edit dialogs.  For example, 

hitting return while the cursor is positioned in the name field of the editor commits the 

concept.  Most editors contain commit and cancel buttons at the bottom which can be 

used to either commit or abort edits.  Lists of items commonly have a + and – button at 

the top of the lists, which respectively mean add a new item, and delete the selected item.  

When the + button is pressed, either a chooser dialog (see the Choosers section) or a 

specialized editor will be opened.  Like the browser, list items can be right-clicked to 

display a list of possible actions.  For example, a superconcept can be clicked in a 

concept editor to immediately edit the concept's parent. 
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Figure 13: Instance Editor 
 

Each type of object has a specialized editor.  For example, an instance editor is shown in 

Figure 13.  There are separate editors for modules, concepts, relations, instances, and 

propositions/rules, which are described in turn below.   
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4.4.5.2 Module Editor 
The module editor contains a number of fields and components used to enter information 

relevant for a new or existing module.  Examples of values that can be edited are a 

module's name, a module's documentation, and a module's includes list.   

4.4.5.3 Concept Editor 
The concept editor allows editing of concept attributes such as a concept's supertypes, its 

name, its associated propositions, etc.  In addition to the inherent attributes of a concept, 

all relations which have the concept as a domain type are displayed and may be edited.  

Clicking the + button above the relation list opens a new relation editor, with default 

values filled in.  Similarly, clicking the + button above the proposition list opens a 

proposition editor.   

4.4.5.4 Relation Editor 
The relation editor allows the user to input a list of variables and types for the relation's 

arguments, and allows the user to set various attributes for a relation, such as whether the 

relation is closed, functional, etc.  Like the concept editor, propositions and rules 

associated with the relation can be edited. 

4.4.5.5 Instance Editor 
The instance editor allows the user to input an instance's name, documentation, and 

associated propositions.  If a proposition uses the relation image-url, an image will be 

retrieved from the server and presented in the editor window.  

4.4.5.6 Proposition editor 
The proposition editor, shown in Figure 14, consists of a text field for entering the 

proposition, and a set of buttons for performing actions on the proposition.  The buttons 

allow a user to assert, deny, or retract the typed proposition.  There are several text-based 

facilities which support efficient editing of propositions.  First, the editor supports many 

Emacs-style keybindings which facilitate editing of lisp-like expressions, including 

selecting entire parenthesis-delimited subexpressions, jumping backward and forward 

over subexpressions, and navigating up and down expression trees. 
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Figure 14: Proposition Editor 

 
In addition to Emacs keybindings, the proposition editor has a matching parenthesis 

highlighter.  When the cursor is placed before a left parenthesis, the matching right 

parenthesis is is highlighted, and when the cursor is placed after a right parenthesis, the 

matching left parenthesis is highlighted. 

The proposition editor also has support for symbol completion.  The GUI uses a 

predictive backtracking parser to analyze partial input of propositions.  Based on the 

analysis, the parser is able to recommend appropriate completions.  For example, if the 

user types (f and then selects the completion action, the parser will recommend a list of 

completions including the forall symbol and all concepts and relations that begin with 

the letter f. 

4.4.6 Choosers 
In a number of situations, an object of a specific type must be selected.  For example, 

when selecting a superconcept in a concept editor, the user should be presented with a list 

of existing concepts.  In these cases, a chooser dialog is presented to the user which 

displays a filterable list of candidate objects.  As the user types a name of the object in 

the name text field, the list of objects is filtered so that only objects which begin with the 

typed prefix are displayed.  Choosers are available for modules,     concept, instances, and 

relations.  A variable chooser allows the user to type a variable name and select a type 

from a concept from a list. 
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Figure 15: Extension Editor 

4.4.7 Extension Editor 
The extension editor, shown in Figure 15, allows editing of a concept or relation's 

extension, and can be opened by right-clicking on a concept or relation in the browser or 

by selecting the Query -> Edit Extension menu item.  The extension editor presents 

a relation's extension as a list of tuples in table format.  The user may add new tuples by 

typing names of instances at the bottom of the table, and may alter existing tuples but 

double-clicking on a table cell and typing in a new value.  Instance name completion is 

available while typing instance names by typing CTRL – [right arrow].  A user 

may choose to abort the edited extension by clicking the Cancel button.  If the user 

clicks the Commit button, the relation's extension will be updated by asserting and 

retracting appropriate propositions. 
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Figure 16: Query Dialog 
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4.4.8 Query/Ask 
The Query dialog, shown in Figure 16, can be opened by selecting the Query -> 

Query menu item, typing CTRL-Q or by pressing the query toolbar button.  The Query 

dialog consists of a text area for typing the query, a results table for displaying the results 

of the query, a query list for selecting pre-saved queries, and an options subpane for 

configuring various query parameters.  

 The query input pane supports features similar to that of the proposition editor, including 

Emacs key bindings, parenthesis matching, and completion.  Queries can be executed by 

hitting CTRL-[RETURN] or by clicking on the Execute button at the bottom of the 

dialog.  After a query has executed, results will be displayed in the results table or a “No 

results found” indicator will flash in the results area.  The column headers for the results 

will display the corresponding free variables in the query.  Results may be sorted by 

clicking on a column header.  Doing so will sort the results by using the clicked column 

as an index.  Users may toggle ascending/descending sort order by clicking the header 

multiple times. 

If the query contains no free variables, it is effectively an ASK operation (as opposed to a 

RETRIEVE operation).  In this case, the result will be a truth value, and the column 

header will be labeled TRUTH-VALUE.  If the query is the result of a partial retrieve 

operation, an additional column containing the match score will be displayed. 

If the user clicks on a cell in the results table, the topmost browser will be updated to 

display the selected item.  For cases where a partial query was performed, the user may 

right-click on a query result and select the “Show Explanation” menu item.  Selecting this 

will present an HTML explanation in a separate window.  The displayed explanation may 

contain hyperlinked objects.  Clicking on a hyperlinked object will update the topmost 

browser to display the object. 

Users may save frequently-executed queries in a query list by clicking the Save button at 

the top of the options panel.  After clicking save, they will be prompted for a query name.  

Saved queries will be stored in the preferences file and are represented as XML.  Saved 

queries are stored in the combobox to the left of the save button.  Selection of a saved 

query will prefill the Query dialog with the query and all saved parameters. 
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All PowerLoom query options are available in the options dialog.  These options 

currently include the query's timeout, moveout, maximum number of unknowns, 

minimum score, and match mode.  

 

 

Figure 17: Search Dialog 

4.4.9 Search 
Users may search for objects in the KB by entering strings which match the name of the 

object.  A search dialog as shown in Figure 17 can be opened by selecting the Query -> 

Search menu item, typing CTRL-F, or by pushing a search toolbar button inside the 

browser.  If the user pushes a search toolbar button inside a navigation pane, the search 

dialog will be configured to search for objects associated with the type of object 
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displayed in the pane.  For example pushing the search button inside the concept 

navigation pane will configure the search dialog to look for concept objects.   

Searches may be constrained in several ways.  First, the type of module may be specified 

or the user may specify that the search should be across all modules.  Second, the types of 

objects to be searched is configurable.  For example, users may search for concepts and 

instances, instances only, etc.  Finally, users may specify that the objects name must 

match the beginning or end of the search string, or exactly match the search string. 

When the user executes the search by hitting return or selecting the OK button, a list of 

results is presented.  These results are presented in table format, where one column is the 

name of the retrieved object, another column contains the module that the object resides 

in, and the final column specifies the type of the object (i.e., concept, instance, etc).  As is 

the case with query results, clicking on a search result item will update the topmost 

browser to display the selected object. 

4.4.10 Console 
The console window, as shown in, can be opened by selecting the KB -> Open 

PowerLoom Console menu item or typing CTRL-P.  This opens an internal window, 

which allows PowerLoom commands to be typed directly and sent to the PowerLoom 

server.  The response generated by PowerLoom is sent back to the GUI and printed below 

the prompt.  This functionality is similar to that of a LISP listener. 
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Figure 18: PowerLoom Console 

4.4.11 Cut/Copy/Paste/Delete 
The PowerLoom GUI supports Cut, Copy, Paste, and Delete operations.   These 

operations can be used to edit text, and in some cases they can be used to edit objects in 

list or trees.  For example, the concept hierarchy can be edited within the browser by 

selecting a concept, executing a cut operation, selecting another concept, and then 

executing paste.  This sequence of operations will delete the concept from it's original 

position in the hierarchy, and make it a subconcept of the concept that was selected when 

the paste operation was performed.    

We have implemented a robust data transfer framework that is capable of recognizing the 

types of objects that are being transferred, and the types of potential transfer sources and 

destinations.  This allows the application to prohibit nonsensical data transfers such as 

cutting a concept in a concept navigation pane and then trying to paste it into a module 

pane.   It also allows data transfer operations to be context sensitive.  For example, 

cutting a concept in a concept navigation pane means that a move operation is being 

initiated, while cutting a concept in a concept editor's superconcept list means that the 

concept should be removed from the list.  Additionally, copying an object such as a 

concept, then executing a paste inside a text window will paste the name of the object. 
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As one would expect, text may be cut/copied/pasted between the GUI and outside 

applications. 

4.5 Future Work 
There are many areas that are good candidates for future development efforts, including: 

4.5.1 Large KBs 
Currently, when a module is selected, the GUI attempts to retrieve all concepts, relations, 

and instances that are contained in the module.  For large knowledge bases, this is clearly 

infeasible.  Some knowledge bases, such as Cyc, contain millions of instances and 

assertions.  We need to develop more sophisticated caching strategies to flush old or 

rarely-used knowledge from the GUI.  Also, we need to develop methods for retrieving 

fixed-sized chunks of a KB at a time.  For example, rather than presenting a list of all 

instances in a module, we might initially present a fixed number N instances, and display 

a button labeled “More instances...” which will retrieve N more instances.  A similar 

strategy can be employed for tree representations of hierarchies.  At first, the topmost 

objects in the hierarchy can be retrieved, and as the user expands the tree, knowledge can 

be retrieved on demand. 

4.5.2 Drag/Drop 
Adding a drag and drop capability would make ontology editing easier than is currently 

possible.  For example, one concept could be dragged on top of another to move the 

object from its current position.  We believe that the existing data transfer framework 

could be leveraged to implement a robust drag and drop facility.  

4.5.3 Scrapbook 
In creating and editing ontologies, it is sometimes desirable to maintain heterogeneous 

scraps of information.  We envision a scrapbook feature where text and objects of various 

types could be dragged and arranged visually.   
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4.5.4 Instance cloning 
It is often useful to create new instances that are similar to existing instances.  We would 

like to implement a cloning facility in which a wizard-like series of dialogs would step 

the user through the process of copying information from one object to a new object.  For 

example, the dialogs would prompt the user for propositions to transfer from the old 

instance to the new instance, and allow the user to modify the propositions in the process 

of transferring them. 

4.5.5 Security 
There is virtually no security implementation in the PowerLoom GUI.  The GUI client 

assumes that is communicating with a trusted host over a secure network.  Similarly, the 

PowerLoom server assumes that it is communicating with a friendly client that has full 

access to the server.  In the future, we need to add security mechanisms which allow 

clients to be authenticated, and resources on the server to be made accessible to 

authorized users only.  In addition, we need to implement encryption mechanisms so that 

that clear text is not sent over insecure networks, potentially compromising sensitive data. 

4.5.6 Multiple users 
Although the client/server model allows multiple GUI clients to concurrently share the 

same server, there is very weak support for synchronizing clients and ensuring that users 

don't accidentally step on each other.  We need to improve our infrastructure to handle 

notification of KB updates, add support for transactions and KB locking, and improve our 

caching mechanisms to detect when the GUI state is out of sync with respect to the 

server. 
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